進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201414561600
論文名稱(中文) 利用鋰同位素探討熱液流體與海洋地殼的水岩交互作用──以米洛斯島為例
論文名稱(英文) Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and the oceanic crust: A case study at Milos, Greece
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 盧裕達
研究生(英文) U-Tat Lou
學號 L46014055
學位類別 碩士
語文別 英文
論文頁數 61頁
口試委員 指導教授-游鎮烽
口試委員-楊懷仁
口試委員-何恭算
中文關鍵字 鋰同位素  熱液流體  米洛斯島  水岩交互作用 
英文關鍵字 Li isotope  hydrothermal fluids  Milos  water rock interaction 
學科別分類
中文摘要 米洛斯島位處愛琴海,是由於非洲板塊隱沒至愛琴海微板塊之下而形成的火山島弧。在其沿海發現許多海底熱泉系統,因所在區域的水深較淺(< 5 m),其化學特性和演化過程能與中洋脊的深海熱泉對比,故米洛斯島為研究熱液系統的重要區域。鋰(Lithium, Li)具高度遷移性且其同位素組成在不同地質樣品中差異極大之特性,故能作為許多地質及地球化學過程之指標。在低溫玄武岩換置作用時,6Li傾向保留在固相內,而7Li則被淋溶至液相,依據固液相的鋰同位素分化程度,鋰同位素能靈敏地反映水岩交互作用劇烈的程度。本研究利用主要與微量元素濃度變化及鋰同位素比值,針對米洛斯島熱液流體的成因與演化進行探討。本研究採用BioRad AG-50W X8陽離子交換樹脂對米洛斯島的海底熱泉中的Li進行化學純化步驟,分離Li與其它基質元素,而鋰同位素組成(δ7Li)則以多接收器感應耦合電漿質譜儀(Multi-collector Inductively Coupled Plasma Mass Spectrometry, MC-ICP-MS)進行分析,其精確度為0.2‰(2σ, n = 24)。樣品的鋰濃度為0.03 mM至10.31 mM,在次臨界相分離過程中,鋰、硼、氯、碘、溴、鈉和鉀富集於液相(Brine);相反地,氣相(Cave)則富集鋁、硫和鐵。另外,液相與氣相流體在相分離過程並沒有明顯的鋰同位素分化。樣品的δ7Li介乎於+1.4‰至+29.7‰,顯示有部份熱液流體受到海水([Li] = 0.02 mM,δ7Li = 31‰)的混染,導致其δ7Li變重,樣品非常乎合Brine與海水的二元混合模型。熱液流體的鋰同位素主要受控於海水混染、海水-玄武岩交互作用與岩漿水(Magmatic water)等其它潛在性的鋰來源。根據計算得知米洛斯島之水岩比例(W/R)偏高,顯示此區域注入至海洋地殼之海水量偏多,且岩石被換置的程度也較高。米洛斯島海底熱泉活動對鋰來說是一個不可忽視的來源,且鋰同位素能有效地作用探討水岩交互作用之工具。
英文摘要 Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li is preferential retained in the mineral phase while 7Li is leached into fluid phase during low-temperature basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflects sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with an average precision of better than 0.2‰ (2σ, n=24). The Li concentration in the hydrothermal fluids falls between 0.03 to 10.31 mM. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotopic fractionation has occurred between the two phases. The δ7Li values vary from +1.4 to +31.3‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. There are several main controls in the δ7Li including seawater contamination, seawater-basalt interaction and other potential sources. The calculated water/rock ratio (W/R) is rather high for the Milos fluids, significant amount of seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes higher altered since the W/R is rather high. Hydrothermal activity in Milos may be a non-negligible source of Li and the Li isotope of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.
論文目次 摘要.......................................................I
Abstract..................................................II
Acknowledgments...........................................IV
Table of Content...........................................V
List of Tables...........................................VII
List of Figures.........................................VIII
List of Appendix...........................................X

Chapter 1 Introduction...............................1
1.1 Worldwide hydrothermal system......................1
1.1.1 The properties of hydrothermal system..............1
1.1.2 The structure of hydrothermal system...............3
1.1.3 Water-rock interaction during hydrothermal circulation................................................7
1.2 The characteristics of lithium.....................9
1.3 Lithium in the hydrothermal system................12
1.4 The aim of this study.............................14
Chapter 2 Studying Area...................................15
2.1 Geological setting................................15
2.2 Hydrothermal activity in Milos....................17
2.3 Sampling..........................................19
Chapter 3 Methodology...............................21
3.1 Chemical reagents and reference materials.........21
3.2 Chromatography....................................22
3.3 Analytical technique..............................25
3.3.1 Elemental concentration...........................25
3.3.2 Lithium isotope...................................25
Chapter 4 Results and Discussion....................28
4.1 The chemical composition in Milos vent fluids.....28
4.2 The δ7Li signature in Milos vent fluids...........32
4.2.1 Seawater contamination............................32
4.2.2 Water-rock interaction............................34
4.2.3 Other potential Li sources........................37
4.3 Comparison with worldwide hydrothermal fluids.....38
4.4 Marine Li budget..................................40
Chapter 5 Conclusion................................42
References................................................44
Appendix..................................................51
Elemental concentration...................................51
Hydrothermal fluids composition in 2002...................51
Hydrothermal fluids composition in 2003...................56
參考文獻 Alt, J. C. (1995). "Subseafloor Processes in Mid-Ocean Ridge Hydrothennal Systems." American Geophysical Union.

Bray, A.M. (2001) "The geochemistry of boron and lithium in mid-ocean ridge hydrothermal vent fluids." PhD Thesis, University of New Hampshire, 125 p.

Brombach, T., Caliro, S., Chiodini, G., Fiebig, J., Hunziker, J. C. and Raco, B. (2003). "Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece." Bulletin of Volcanology 65: 505-516.

Botz, R., Stuben, D., Winckler, G., Bayer, R., Schmitt, M. and Faber, E. (1996). "Hydrothermal gases offshore Milos Island, Greece." Chemical Geology 130: 161-173.

Campbell, K. A. (2006). "Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions." Palaeogeography Palaeoclimatology Palaeoecology 232: 362-407.

Chan, L. H. and Edmond, J. M. (1988). "Variation of Lithium Isotope Composition in the Marine-Environment - a Preliminary-Report." Geochimica Et Cosmochimica Acta 52: 1711-1717.

Chan, L. H., Edmond, J. M., Thompson, G. and Gillis, K. (1992). "Lithium Isotopic Composition of Submarine Basalts - Implications for the Lithium Cycle in the Oceans." Earth and Planetary Science Letters 108: 151-160.

Chan, L. H., Edmond, J. M. and Thompson, G. (1993). "A Lithium Isotope Study of Hot-Springs and Metabasalts from Midocean Ridge Hydrothermal Systems." Journal of Geophysical Research-Solid Earth 98: 9653-9659.

Chan, L. H., Gieskes, J. M., You, C. F. and Edmond, J. M. (1994). "Lithium Isotope Geochemistry of Sediments and Hydrothermal Fluids of the Guaymas Basin, Gulf of California." Geochimica Et Cosmochimica Acta 58: 4443-4454.

Chan, L. H., Alt, J. C. and Teagle, D. A. H. (2002). "Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A." Earth and Planetary Science Letters 201: 187-201.

Damm, V. (1995). "Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions." American Geophysical Union, Washington, DC: 222-247.

Damm, V., Gendler, T. S., Gooskova, E. G., Khramov, A. N., Lewandowski, M., Nozharov, P., Pavlov, V. I., Petrova, G. N., Pisarevsky, S. A. and Sokolov, S. J. (1997). "Palaeomagnetic studies of Proterozoic rocks from the Lake Onega region, southeast Fennoscandian shield." Geophysical Journal International 129: 518-530.

Dando, P. R., Hughes, J. A., Leahy, Y., Niven, S. J., Taylor, L. J. and Smith, C. (1995). "Gas Venting Rates from Submarine Hydrothermal Areas around the Island of Milos, Hellenic Volcanic Arc." Continental Shelf Research 15: 913-929.

Edmond, J. M., Measures, C., Mcduff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I. and Corliss, J. B. (1979). "Ridge Crest Hydrothermal Activity and the Balances of the Major and Minor Elements in the Ocean - Galapagos Data." Earth and Planetary Science Letters 46: 1-18.

Elderfield, H. and A. Schultz (1996). "Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean." Annual Review of Earth and Planetary Sciences 24: 191-224.

Foustoukos, D. I., James, R. H. and Seyfried, W. E. (2003). "Lithium isotopic systematics of the main endeavour field vent fluids, northern Juan de Fuca Ridge." Geochimica Et Cosmochimica Acta 67: A101-A101.

Foustoukos, D. I., James, R. H., Berndt, M. E. and Seyfried, W. E. (2004). "Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge." Chemical Geology 212: 17-26.

Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Poli, G., Rita, F. and Villari, L. (1986). "Volcanology and Petrology of Volcanic Products from the Island of Milos and Neighboring Islets." Journal of Volcanology and Geothermal Research 28: 297-317.

Hoffmann, C. and Keller, J. (1979). "Xenoliths of Lawsonite-Ferroglaucophane Rocks from a Quaternary Volcano of Milos (Aegean Sea, Greece)." Lithos 12: 208-219.

Huang, K. F., You, C. F., Liu, Y. H., Wang, R. M., Lin, P. Y. and Chung, C. H. (2010). "Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 25: 1019-1024.

Huh, Y., Chan, L. H., Zhang, L. and Edmond, J. M. (1998). "Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget." Geochimica Et Cosmochimica Acta 62: 2039-2051.

James, R. H., Rudnicki, M. D. and Palmer, M. R. (1999). "The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system." Earth and Planetary Science Letters 171: 157-169.

James, R. H., Allen, D. E. and Seyfried, W. E. (2003). "An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 degrees C): Insights as to chemical processes in near-shore ridge-flank hydrothermal systems." Geochimica Et Cosmochimica Acta 67: 681-691.

Liebscher, A., Meixner, A., Romer, R. L. and Heinrich, W. (2007). "Experimental calibration of the vapour-liquid phase relations and lithium isotope fractionation in the system H2O-LiCl at 400 degrees C/20-28 MPa." Geofluids 7: 369-375.

Magenheim, A.J., Spivack, A.J., Alt, J. C., Bayhurst, G., Chan, L. H., Gieskes, J. M., Zuleger, E. (1995). "Borehole fluid chemistry in Hole 504B, Leg 137, Formation water or in situ reaction?." Proc. ODP Sci. Results: 141-152.

Magna, T., Wiechert, U. H. and Halliday, A. N. (2004). "Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS." International Journal of Mass Spectrometry 239: 67-76.

Magna, T., Wiechert, U., Grove, T. L. and Halliday, A. N. (2006). "Lithium isotope fractionation in the southern Cascadia subduction zone." Earth and Planetary Science Letters 250: 428-443.

Millot, R., Scaillet, B. and Sanjuan, B. (2010). "Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach." Geochimica Et Cosmochimica Acta 74: 1852-1871.

Misra, S. and Froelich, P. N. (2012). "Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering." Science 335: 818-823.

Naden, J., Kilias, S. P. and Darbyshire, D. P. F. (2005). "Active geothermal systems with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: The example of Milos Island, Greece." Geology 33: 541-544.

Pistiner, J. S. and Henderson, G. M. (2003). "Lithium-isotope fractionation during continental weathering processes." Earth and Planetary Science Letters 214: 327-339.

Sclater, J. G., Parsons, B. and Jaupart, C. (1981). "Oceans and Continents - Similarities and Differences in the Mechanisms of Heat-Loss." Journal of Geophysical Research 86: 11535-11552.

Stein, C. A. and Stein, S. (1994). "Constraints on Hydrothermal Heat-Flux through the Oceanic Lithosphere from Global Heat-Flow." Journal of Geophysical Research-Solid Earth 99: 3081-3095.

Thompson, G. (1983). "Basalt-seawater interaction, in Hydrothermal processes at seafloor spreading centers." Plenum, New York: 225-278.

Tomascak, P. B. (2004). "Developments in the understanding and application of lithium isotopes in the earth and planetary sciences." Geochemistry of Non-Traditional Stable Isotopes 55: 153-195.

Valsami-Jones, E., Baltatzis, E., Bailey, E. H., Boyce, A. J., Alexander, J. L., Magganas, A., Anderson, L., Waldron, S. and Ragnarsdottir, K. V. (2005). "The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc." Journal of Volcanology and Geothermal Research 148: 130-151.

Wu, S. F., You, C. F., Wang, B. S., Valsami-Jones, E. and Baltatzis, E. (2011). "Two-cells phase separation in shallow submarine hydrothermal system at Milos Island, Greece: Boron isotopic evidence." Geophysical Research Letters 38.

Wu, S. F., You, C. F., Valsami-Jones, E., Baltatzis, E. and Shen, M. L. (2012). "Br/Cl and I/Cl systematics in the shallow-water hydrothermal system at Milos Island, Hellenic Arc." Marine Chemistry 140: 33-43.

Wu, S. F. (2013). "Origin, Migration and Evolution of Fluids in Submarine Seep-Vent Environments: Studies of Milos Island, Greece and Mississippi River plume in northern Gulf of Mexico." PhD Thesis, National Cheng Kung University, 199 p.

You, C. F., Chan, L. H., Spivack, A. J. and Gieskes, J. M. (1995). "Lithium, Boron, and Their Isotopes in Sediments and Pore Waters of Ocean Drilling Program Site-808, Nankai Trough - Implications for Fluid Expulsion in Accretionary Prisms." Geology 23: 37-40.

Zhang, L. B., Chan, L. H. and Gieskes, J. M. (1998). "Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin." Geochimica Et Cosmochimica Acta 62: 2437-2450.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw