進階搜尋


 
系統識別號 U0026-2208201221232000
論文名稱(中文) 電化學沉積在毛細管電泳晶片應用於組織胺檢測
論文名稱(英文) Electrochemical Detector Prepared by Electro-deposition on a Capillary Electrophoresis Microchip for Histamine
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 林欣怡
研究生(英文) Shin-Yi Lin
學號 P86994206
學位類別 碩士
語文別 英文
論文頁數 57頁
口試委員 指導教授-張憲彰
口試委員-王志堯
口試委員-謝奇璋
口試委員-陳家進
口試委員-吳靖宙
中文關鍵字 疏水回復  電鍍  毛細管電泳晶片  組織胺  聚甲基矽氧烷 
英文關鍵字 hydrophobic recovery  deposition  capillary chip  histamine  poly (dimethylsiloxane) 
學科別分類
中文摘要 過敏是最常見的疾病之一,而過敏人口逐年增加,因此快速檢測過敏有其必要性。目前的過敏檢測方法,主要檢測免疫球蛋白IgE來判斷患者過敏原因,然而並不是所有過敏反應都與IgE有關,因為過敏本質上主要原因為嗜鹼性白血球細胞或肥大細胞受到活化或刺激後分泌組織胺,因此直接針對造成過敏反應的物質進行檢測是極為重要的。本研究開發毛細管電泳晶片,檢測過敏反應中主要分泌物-組織胺。毛細管電泳利用電泳力及電滲流力將樣本分離及輸送至偵測槽中,並搭配電化學做即時性檢測。晶片由電極和聚甲基矽氧烷 (PDMS) 微管道所組成,PDMS微管道利用熱處理的方式來改善氧電漿修飾後的不穩定性,而最佳的熱處理時間為12 h,最後製作完畢的PDMS微管道與電極藉由氧電漿處理將其接合,最後在參考及接地電極上電鍍白金,而工作電極上電鍍金即可完成。組織胺在10 mM MES溶液中最佳的電泳實驗檢測條件為注入電場+500 V/cm、注入時間35 sec、分離電場+180 V/cm以及+120 V/cm之推回電壓,並搭配上電鍍金的方式,增加工作電極表面積,降低組織胺檢測極限,其線性範圍為2 μM ~ 30 μM(R2=0.999),檢測極限為1 μM (S/N ≧ 3)。最後,初步測得KU-812細胞 (1×108 cells/mL) 經1 μM鈣離子載體 (A23187) 刺激20 min後取上清液檢測,電流響應為0.4 nM,回推組織胺濃度約為3 μM,未來本系統期望能應用在臨床上細胞過敏反應的評估。
英文摘要 An allergy is a hypersensitivity disorder of the immune system that affects many people around the world and the number is still increasing every year; thus immediate diagnosis and prevention of allergies is very important. The conventional detection of allergic reaction does focus on the amount of IgE in the serum to diagnose the reason of allergy. However, the allergic reaction is not entirely depending on IgE. Because major factor for allergic reactions is histamine released from basophiles or mast cells; therefore, detection of substance causing an allergic reaction is important. In the study, we aim to develop a capillary electrophoresis (CE) chip to detect histamine causing an allergic reaction. CE chip used electroosmotic and electrophoretic forces to separate and transport the sample toward the sample reservoir, and then real time detected the sample based on electrochemical method. The CE chip consisted electrode chip and polydimethylsiloxane (PDMS) microchannel, and the PDMS microchannel treated by thermal aging and oxygen plasma to bind with electrode chip. The reference and decoupler electrodes were deposited by Pt and the working electrode was deposited by Au. We obtain the optimum conditions for histamine detection in MES buffer in the injection field of 500 V/cm for 35 sec, separation field of 180 V/cm, and pushback field of 120 V/cm. To decrease the detection limit of histamine, we deposited Au nanoparticle on the working electrode for increasing the surface area. A regression line of histamine concentration showed at 2 and 30 μM and the correlation coefficient was 0.999 (n=2). The detection limit of histamine was 1 μM. Lastly, we stimulated KU-812 cells (1×108 cells/mL) by calcium ionophore (A23187) for 20 min, and then extracted the supernatant to detection. We have successfully detected histamine in supernatant, the current and concentration of histamine was 0.4 nA and 3 μM. In the future, the system could be applied for clinical investigation of allergic reaction.
論文目次 Abstract I
中文摘要 II
致謝 III
Table List VI
Figures List VII
Chapter 1 Introduction 1
1.1 Allergic Reaction 1
1.2 Metabolic Pathway of Histamine 3
1.2 The Methods of Histamine Detection 4
1.3 The Theory of Capillary Electrophoresis 5
1.3.1 Electrophoretic Force 5
1.3.2 Electroosmotic Force 6
1.4 The Properties of Polydimethylsiloxane 7
1.5 The Method of PDMS Modification 8
1.6 The Method of Increasing the Area of Detection Electrode 10
1.7 Allergy Diagnosis in Cellular Level 13
1.8 Motivation and Objective 16
Chapter 2 Materials and Experiment 18
2.1 Equipments 18
2.2 Chemicals for Microfabrication 18
2.3 Chemical for Analysis 18
2.4 Test Solution 19
2.5 Fabrication of the Microchannel 20
2.6 Fabrication of the Au Electrode and Chip Bonding 21
2.7 Electroosmotic Measurement 24
2.8 Electrophoregrams Measurement 25
2.9 Detection of histamine released from KU-812 Cells 25
2.10 Optical Detection of Histamine 27
Chapter 3 Results and Discussion 29
3.1 Evaluation of Hydrophobic Recovery of PDMS 29
3.1.1 Contact Angle Measurements of PDMS 29
3.1.2 Electroosmotic Measurements of Chip 30
3.1.3 Electrophoresis Current Measurements of Chip 31
3.2 The Choose of Detection Potential of Histamine 32
3.3 CE-EC System Evaluation 33
3.3.1 Optimum Parameters for Decoupling 33
3.3.2 Effect of Injection Time, Separation Voltage 39
3.4 Optimum Parameters for Deposition of Au on Working Electrode 41
3.4 Calibration Curve for the Electrochemical Detection of Histamine 43
3.5 Detection of Histamine Released from KU-812 Cells 45
Chapter 4 Conclusions 48
Reference 50
Attachment 55

參考文獻 [1] E. Crivellato, B. Nico, and D. Ribatti, “The history of the controversial relationship between mast cells and basophils,” Immunology Letters, vol. 141, no. 1, pp. 10-17, 2011.
[2] E. F. Knol, and M. Olszewski, “Basophils and mast cells: Underdog in immune regulation?,” Immunology Letters, vol. 138, no. 1, pp. 28-31, 2011.
[3] L. Maintz, and N. Novak, “Histamine and histamine intolerance,” American Journal of Clinical Nutrition, vol. 85, no. 5, pp. 1185-1196, 2007.
[4] H. R. Nouri, A. Varasteh, F. Vahedi et al., “Constructing a hybrid molecule with low capacity of IgE binding from Chenopodium album pollen allergens,” Immunology Letters, vol. 144, no. 1-2, pp. 67-77, 2012.
[5] S. Oguri, and Y. Yoneya, “Assay and biological relevance of endogenous histamine and its metabolites: application of microseparation techniques,” Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol. 781, no. 1-2, pp. 165-179, 2002.
[6] T. Toyo'oka, “Separation assay of histamine and its metabolites in biological specimens,” Biomedical Chromatography, vol. 22, no. 9, pp. 919-930, 2008.
[7] K. Lin, Y. Huang, H. Su et al., “In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis,” Analytica Chimica Acta, vol. 619, no. 1, pp. 115-121, 2008.
[8] Y. Liu, J. A. Vickers, and C. S. Henry, “Simple and sensitive electrode design for microchip electrophoresis/electrochemistry,” Analytical Chemistry, vol. 76, no. 5, pp. 1513-1517, 2004.
[9] S. Tuomikoski, and S. Franssila, “Free-standing SU-8 microfluidic chips by adhesive bonding and release etching,” Sensors and Actuators A: Physical, vol. 120, no. 2, pp. 408-415, 2005.
[10] D. N. Heiger, High performance capillary electrophoresis : an introduction, 2nd ed., France?: Hewlett Packard Co., 1992.
[11] C. S. Henry, Microchip capillary electrophoresis : methods and protocols, Totowa, N.J.: Humana Press, 2006.
[12] A. Ranjit Prakash, S. Adamia, V. Sieben et al., “Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier,” Sensors and Actuators B: Chemical, vol. 113, no. 1, pp. 398-409, 2006.
[13] 謝雅玉, “用於微晶片之聚雙甲基矽氧烷材料表面穩定化學修飾,” 化學工程研究所碩士班, 國立成功大學, 台南市, 2005.
[14] C. García, “Enhanced determination of glucose by microchip electrophoresis with pulsed amperometric detection,” Analytica Chimica Acta, vol. 508, no. 1, pp. 1-9, 2004.
[15] H. T. Kim, and O. C. Jeong, “PDMS surface modification using atmospheric pressure plasma,” Microelectronic Engineering, vol. 88, no. 8, pp. 2281-2285, 2011.
[16] K. W. Ro, K. Lim, H. Kim et al., “Poly(dimethylsiloxane) microchip for precolumn reaction and micellar electrokinetic chromatography of biogenic amines,” Electrophoresis, vol. 23, no. 7-8, pp. 1129-1137, 2002.
[17] A. Wang, J. Xu, and H. Chen, “In-situ grafting hydrophilic polymer on chitosan modified poly(dimethylsiloxane) microchip for separation of biomolecules,” Journal of Chromatography A, vol. 1147, no. 1, pp. 120-126, 2007.
[18] D. Wu, B. Zhao, Z. Dai et al., “Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption,” Lab on a Chip, vol. 6, no. 7, pp. 942, 2006.
[19] A. Wang, J. Feng, and J. Fan, “Covalent modified hydrophilic polymer brushes onto poly(dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids,” Journal of Chromatography A, vol. 1192, no. 1, pp. 173-179, 2008.
[20] G. T. Roman, T. Hlaus, K. J. Bass et al., “Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic Mobilities and hydrophilic channel wall characteristics,” Analytical Chemistry, vol. 77, no. 5, pp. 1414-1422, 2005.
[21] V. Sharma, M. Dhayal, Govind et al., “Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications,” Vacuum, vol. 81, no. 9, pp. 1094-1100, 2007.
[22] G. D. Sui, J. Y. Wang, C. C. Lee et al., “Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels,” Analytical Chemistry, vol. 78, no. 15, pp. 5543-5551, 2006.
[23] J. Kim, “Hydrophobic Recovery of Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge,” Journal of Colloid and Interface Science, vol. 226, no. 2, pp. 231-236, 2000.
[24] J. Kim, “The Mechanisms of Hydrophobic Recovery of Polydimethylsiloxane Elastomers Exposed to Partial Electrical Discharges,” Journal of Colloid and Interface Science, vol. 244, no. 1, pp. 200-207, 2001.
[25] J. Kim, M. Chaudhury, and M. Owen, “Modeling hydrophobic recovery of electrically discharged polydimethylsiloxane elastomers,” Journal of Colloid and Interface Science, vol. 293, no. 2, pp. 364-375, 2006.
[26] J. Zhao, Q. Zhang, H. Yang et al., “Electrophoretic separation of neurotransmitters on a polystyrene nano-sphere/polystyrene sulphonate coated poly(dimethylsiloxane) microchannel,” Biomicrofluidics, vol. 5, no. 3, pp. 034104, 2011.
[27] R. S. Pai, K. M. Walsh, M. M. Crain et al., “Fully Integrated Three-Dimensional Electrodes for Electrochemical Detection in Microchips: Fabrication, Characterization, and Applications,” Analytical Chemistry, vol. 81, no. 12, pp. 4762-4769, 2009.
[28] V. Carralero, A. Gonzalez-Cortes, P. Yanez-Sedeno et al., “Pulsed amperometric detection of histamine at glassy carbon electrodes modified with gold nanoparticles,” Electroanalysis, vol. 17, no. 4, pp. 289-297, 2005.
[29] B. J. Plowman, M. Mahajan, A. P. O'Mullane et al., “Electrochemical detection of dopamine and cytochrome c at a nanostructured gold electrode,” Electrochimica Acta, vol. 55, no. 28, pp. 8953-8959, 2010.
[30] J. M. Pingarron, P. Yanez-Sedeno, and A. Gonzalez-Cortes, “Gold nanoparticle-based electrochemical biosensors,” Electrochimica Acta, vol. 53, no. 19, pp. 5848-5866, 2008.
[31] S. J. Guo, and E. K. Wang, “Synthesis and electrochemical applications of gold nanoparticles,” Analytica Chimica Acta, vol. 598, no. 2, pp. 181-192, 2007.
[32] E. Katz, I. Willner, and J. Wang, “Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles,” Electroanalysis, vol. 16, no. 1-2, pp. 19-44, 2004.
[33] Y. Matsubara, Y. Murakami, M. Kobayashi et al., “Application of on-chip cell cultures for the detection of allergic response,” Biosensors & Bioelectronics, vol. 19, no. 7, pp. 741-747, 2004.
[34] Q. F. Weng, F. Q. Xia, and W. R. Jin, “Measurement of histamine in individual rat peritoneal mast cells by capillary zone electrophoresis with electrochemical detection,” Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol. 779, no. 2, pp. 347-352, 2002.
[35] E. F. Knol and M. Olszwski, “Basophils and mast cells: Underdog in immune regulation?,” Immunology Leters, vol. 138 no. 17, pp. 28-31, 2011.
[36] B. J. Abbott, D. S. Fukuda, D. E. Dorman et al., “Microbial transformation of A23187, a divalent cation ionophore antibiotic,” Antimicrob Agents Chemother, vol. 16, no. 6, pp. 808-12, 1979.
[37] A. Verma, A. N. Bhatt, A. Farooque et al., “Calcium ionophore A23187 reveals calcium related cellular stress as "I-Bodies": An old actor in a new role,” Cell Calcium, vol. 50, no. 6, pp. 510-522, 2011.
[38] D. M. Zhu, A. Saul, S. H. Huang et al., “Use of o-phthalaldehyde assay to determine protein contents of Alhydrogel-based vaccines,” Vaccine, vol. 27, no. 43, pp. 6054-6059, 2009.
[39] N. A. Lacher, S. M. Lunte, and R. S. Martin, “Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device,” Analytical Chemistry, vol. 76, no. 9, pp. 2482-2491, 2004.
[40] C. C. Wu, R. G. Wu, J. G. Huang et al., “Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection,” Analytical Chemistry, vol. 75, no. 4, pp. 947-952, 2003.
[41] S. R. Wallenborg, L. Nyholm, and C. E. Lunte, “End-column amperometric detection in capillary electrophoresis: Influence of separation-related parameters on the observed half-wave potential for dopamine and catechol,” Analytical Chemistry, vol. 71, no. 3, pp. 544-549, 1999.
[42] J. Wang, M. Pumera, M. P. Chatrathia et al., “Thick-film electrochemical detectors for poly(dimethylsiloxane)based microchip capillary electrophoresis,” Electroanalysis, vol. 14, no. 18, pp. 1251-1255, 2002.
[43] F. M. Matysik, “Improved end-column amperometric detection for capillary electrophoresis,” Journal of Chromatography A, vol. 742, no. 1-2, pp. 229-234, 1996.
[44] E. M. Hudak, J. T. Mortimer, and H. B. Martin, “Platinum for neural stimulation: voltammetry considerations,” Journal of Neural Engineering, vol. 7, no. 2, pp. 26005, 2010.
[45] T. Yoshitake, F. Ichinose, H. Yoshida et al., “A sensitive and selective determination method of histamine by HPLC with intramolecular excimer-forming derivatization and fluorescence detection,” Biomedical Chromatography, vol. 17, no. 8, pp. 509-516, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw