進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201215412400
論文名稱(中文) 耐力運動訓練與低蛋胺酸飲食對成長中大鼠肝臟組織氧化壓力與老化相關蛋白表現之影響
論文名稱(英文) The Effects of Endurance Training and Low-Methionine Diets on Tissue Oxidative Stress and Aging Related Protein Expression in Liver of Growing Rats
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 100
學期 2
出版年 101
研究生(中文) 梁詠喻
研究生(英文) Yung-Yu Liang
學號 rb6991096
學位類別 碩士
語文別 中文
論文頁數 49頁
口試委員 指導教授-黃滄海
口試委員-謝伸裕
口試委員-何仁育
中文關鍵字 運動  蛋胺酸  肝臟  氧化壓力 
英文關鍵字 exercise  methionine  liver  oxidative stress 
學科別分類
中文摘要 如何活得長壽又健康已經成為現今社會大眾所關注的課題,而在日常生活中,與健康長壽息息相關的生活策略不外乎適當飲食與身體活動量。近年來的動物研究發現,限制蛋白質成份中的蛋胺酸 (methionine, Met),可有延緩老化的效果,而老化與氧化壓力之間有著密不可分的關係,因此的蛋胺酸飲食所呈現延緩老化的現象可能與氧化壓力的減少有關。此外,耐力運動訓練是否能與低蛋胺酸飲食對降低氧化壓力產生加成的效果或進一步有修飾低蛋胺酸飲食的些許負面效應,有待進一步的研究。目的:探討耐力運動訓練與飲食中不同蛋胺酸含量對成長中大鼠肝臟組織氧化壓力及老化相關蛋白的影響。方法:雄性 7週大SD 大鼠(n=72),分成飲食控制組 (0.86%Met, n=12)、 0.52%蛋胺酸 (0.52%Met, n=12)、0.17%蛋胺酸 (0.17%Met, n=12)與飲食控制+運動訓練組 (0.86%Met+EXE, n=12) 、0.52%蛋胺酸+運動訓練組 (0.52%Met+EXE, n=12) 以及0.17%蛋胺酸+運動訓練組 (0.17%Met+EXE, n=12)。於8週運動訓練後人道犧牲,取其肝臟組織並保存於-80℃冷凍隨後進行分析。統計分析方法以two-way ANOVA (飲食×運動)進行組間考驗 (α=.05),若達顯著水準 (p<.05)以 LSD 方法進行事後比較。結果:肝臟組織 TBARS 與磷酸化 Akt 在運動的主要效果達顯著差異,呈現耐力運動訓練的老鼠顯著低於無受過耐力運動訓練的老鼠 (EXEs<non-EXEs)。胰島素受器於交互作用達顯著差異 (p= .035),正常飲食(0.86%Met)動物的肝臟胰島素受器於運動組顯著高於非運動組 (0.86%Met+EXE: 106%±9.5% vs. 0.86%Met: 100%±1.6%, p= .024 ),於飲食的單純主要效果中非運動的三組間達顯著差異 (0.17%MET: 111%±8%, 0.52%Met: 105%±3.9%, 0.86%Met: 100%±1.6%, p<.001)。 IGF-1受器於運動與飲食的主要效果達顯著差異,非運動訓練老鼠的 IGF-1受器表現量顯著少於運動組 (non-EXEs<EXEs, p< .001),正常飲食的老鼠顯著少於0.17%蛋胺酸飲食的老鼠 (0.86%Mets<0.17%Mets, p= .022)。結論:耐力運動訓練與低蛋胺酸飲食對於成長中大鼠肝臟氧化壓力的相關指標與老化相關蛋白之表現各呈現其正面助益。
英文摘要 Natural life strategies related to healthy longevity are nothing more than regular exercise and healthy diets in our daily life. Recent researches indicated that lower the content of methionine in diets could effectively delay the procedure of ageing. Since oxidative stress is well known to be associated with ageing, the low-methionine diets might be associated with decreasing oxidative stress. Moreover, whether endurance exercise training can show synergistic effects with low-methionine diets on decreasing oxidative stress or modifying effects on some negative effects caused by low-methionine diets would be valuable for further study. Purpose: To investigate the effects of endurance training and different methionine content diets on oxidative stress and aging related protein (e.g. insulin receptor, IGF-1 receptor and Akt) expression in liver. Methods: Male Sprague Dawley rats (7 weeks old, n=72) were randomly assigned to six groups, which were the 0.86%Met, 0.52%Met, 0.17%Met, 0.86%Met+EXE, 0.52%Met+EXE, and 0.17%Met+EXE groups, for each groups n=12. After an 8-week diets and exercise training intervention, animals were sacrificed under deep anesthesia. The liver tissue were collected and stored at -80℃ for further analysis. Statistical analysis were processed by using two-way ANOVA (diet×exercise) (α=.05). LSD method were used for post hoc comparison. Result: The expression of TBARS and p-Akt in liver tissue reached the significant levels in the main effect of exercise (EXEs>non-EXEs). Significant interaction was shown in insulin receptor (post hoc comparision: 0.86%Met+EXE group>0.86%Met group, p= .024; 0.17%Met group>0.52%Met group>0.86%Met group, p< .001). IGF-1 receptor reached the significant level both in the main effects of diet (0.86%Mets<0.17%Mets, p= .022) and exercise (non-EXEs<EXEs, p< .001). Conclusion: Endurance exercise and low methionine diets respectively showed positive effects on regulation of oxidative stress and aging related protein expression in liver of growing rats.
論文目次 目錄
中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
表次 vi
圖次 vii
第壹章 緒論 1
第一節 問題背景 1
第二節 研究目的 4
第三節 名詞操作性定義 4
第四節 研究限制 5
第五節 研究重要性 5
第貳章 相關文獻探討 6
第一節 低蛋胺酸飲食、肝臟insulin/IGF-1、Akt/FoxO pathway與肝臟氧化壓力之間的關係探討 6
第二節 運動對肝臟 insulin/IGF-1、 Akt/FoxO pathway 及氧化壓力的影響 10
第三節 結語 13
第參章 研究方法 14
第一節 實驗動物 14
第二節 實驗設計 14
第三節 運動訓練設計 14
第四節 動物犧牲 15
第五節 肝臟樣本收集及分析 15
第六節 統計分析 18
第肆章 結果 19
第一節 運動與低蛋胺酸飲食對體重與氧化壓力指標的影響 19
第二節 運動與低蛋胺酸飲食對 insulin/IGF-1 受器表現量及其下游因子(p-Akt)的影響 22
第伍章 討論 27
第一節 運動與低蛋胺酸飲食對體重及氧化壓力指標的影響 27
第二節 運動與低蛋胺酸飲食對 insulin 及 IGF-1 受器表現量的影響 30
第三節 運動與低蛋胺酸飲食對磷酸化蛋白質激酶 B型 (p-Akt) 表現量的影響與機轉探討 33
第四節 結論與建議 34
引用文獻 35



參考文獻 張馨文(2011)。耐力訓練與低蛋胺酸飲食對成長中大鼠骨骼肌的影響:胰島素/類胰島素生長因子-1 軸、有氧代謝與氧化壓力之關聯性探討。未出版碩士論文,國立成功大學,台南市。
Adler, A. S., Sinha, S., Kawahara, T. L., Zhang, J. Y., Segal, E., & Chang, H. Y. (2007). Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes & Gevelopment, 21(24), 3244-3257.
Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., et al. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. The EMBO Journal, 15(23), 6541-6551.
Alessio, H. M., & Goldfarb, A. H. (1988). Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. Journal of Applied Physiology, 64(4), 1333-1336.
Allen, N. E., Appleby, P. N., Davey, G. K., Kaaks, R., Rinaldi, S., & Key, T. J. (2002). The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiology, Biomarkers & Prevention, 11(11), 1441-1448.
Allen, N. E., Appleby, P. N., Davey, G. K., & Key, T. J. (2000). Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. British Journal of Cancer, 83(1), 95-97.
Allen, N. E., Appleby, P. N., Kaaks, R., Rinaldi, S., Davey, G. K., & Key, T. J. (2003). Lifestyle determinants of serum insulin-like growth-factor-I (IGF-I), C-peptide and hormone binding protein levels in British women. Cancer Causes & Control, 14(1), 65-74.
Arner, P., Einarsson, K., Backman, L., Nilsell, K., Lerea, K. M., & Livingston, J. N. (1983). Studies of liver insulin receptors in non-obese and obese human subjects. The Journal of Clinical Investigation, 72(5), 1729-1736.
Barbieri, M., Bonafe, M., Franceschi, C., & Paolisso, G. (2003). Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. American Journal of Physiology. Endocrinology and Metabolism, 285(5), E1064-1071.
Barzilai, N., Banerjee, S., Hawkins, M., Chen, W., & Rossetti, L. (1998). Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. The Journal of Clinical Investigation, 101(7), 1353-1361.
Barzilai, N., & Rossetti, L. (1995). Relationship between changes in body composition and insulin responsiveness in models of the aging rat. The American Journal of Physiology, 269(3 Pt 1), E591-597.
Brown-Borg, H. M., Rakoczy, S. G., & Uthus, E. O. (2005). Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. Mechanisms of Ageing and Development, 126(3), 389-398.
Calnan, D. R., & Brunet, A. (2008). The FoxO code. Oncogene, 27(16), 2276-2288.
Caro, P., Gomez, J., Lopez-Torres, M., Sanchez, I., Naudi, A., Jove, M., et al. (2008). Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology, 9(3), 183-196.
Caro, P., Gomez, J., Sanchez, I., Naudi, A., Ayala, V., Lopez-Torres, M., et al. (2009). Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Research, 12(6), 421-434.
Ceriello, A., & Motz, E. (2004). Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(5), 816-823.
Chakraborty, C., Agoramoorthy, G., & Hsu, M. J. (2011). Exploring the evolutionary relationship of insulin receptor substrate family using computational biology. PloS One, 6(2), e16580.
da Luz, G., Frederico, M. J., da Silva, S., Vitto, M. F., Cesconetto, P. A., de Pinho, R. A., et al. (2011). Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats. European Journal of Applied Physiology, 111(9), 2015-2023.
Datta, S. R., Brunet, A., & Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes & Development, 13(22), 2905-2927.
Davidson, R. T., Arias, E. B., & Cartee, G. D. (2002). Calorie restriction increases muscle insulin action but not IRS-1-, IRS-2-, or phosphotyrosine-PI 3-kinase. American journal of physiology. Endocrinology and Metabolism, 282(2), E270-276.
Drew, B., Phaneuf, S., Dirks, A., Selman, C., Gredilla, R., Lezza, A., et al. (2003). Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284(2), R474-480.
Eliakim, A., Brasel, J. A., Mohan, S., Barstow, T. J., Berman, N., & Cooper, D. M. (1996). Physical fitness, endurance training, and the growth hormone-insulin-like growth factor I system in adolescent females. The Journal of Clinical Endocrinology and Metabolism, 81(11), 3986-3992.
Eliakim, A., Brasel, J. A., Mohan, S., Wong, W. L., & Cooper, D. M. (1998). Increased physical activity and the growth hormone-IGF-I axis in adolescent males. The American Journal of Physiology, 275(1 Pt 2), R308-314.
Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2003). Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes, 52(1), 1-8.
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239-247.
Granado-Serrano, A. B., Martin, M. A., Bravo, L., Goya, L., & Ramos, S. (2009). A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food and Chemical Toxicology, 47(10), 2499-2506.
Grandys, M., Majerczak, J., Duda, K., Zapart-Bukowska, J., Sztefko, K., & Zoladz, J. A. (2008). The effect of endurance training on muscle strength in young, healthy men in relation to hormonal status. Journal of Physiology and Pharmacology, 59 Suppl 7, 89-103.
Gredilla, R., Sanz, A., Lopez-Torres, M., & Barja, G. (2001). Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. The FASEB Journal, 15(9), 1589-1591.
Gudbrandsen, O. A., Wergedahl, H., Liaset, B., Espe, M., & Berge, R. K. (2005). Dietary proteins with high isoflavone content or low methionine-glycine and lysine-arginine ratios are hypocholesterolaemic and lower the plasma homocysteine level in male Zucker fa/fa rats. The British Journal of Nutrition, 94(3), 321-330.
Havel, P. J. (2004). Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes, 53 Suppl 1, S143-151.
Hernandez-Sanchez, C., Blakesley, V., Kalebic, T., Helman, L., & LeRoith, D. (1995). The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. The Journal of Biological Chemistry, 270(49), 29176-29181.
Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P. C., et al. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421(6919), 182-187.
Huang, C., Li, J., Ding, M., Leonard, S. S., Wang, L., Castranova, V., et al. (2001). UV Induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide. The Journal of Biological Chemistry, 276(43), 40234-40240.
Huang, C. Y., Yang, A. L., Lin, Y. M., Wu, F. N., Lin, J. A., Chan, Y. S., et al. (2012). Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. Journal of Applied Physiology, 112(5), 883-891.
Huang, T. H., Chang, F. L., Lin, S. C., Liu, S. H., Hsieh, S. S., & Yang, R. S. (2008). Endurance treadmill running training benefits the biomaterial quality of bone in growing male Wistar rats. Journal of Bone and Mineral Metabolism, 26(4), 350-357.
Huang, T. H., Lin, S. C., Chang, F. L., Hsieh, S. S., Liu, S. H., & Yang, R. S. (2003). Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. Journal of Applied Physiology, 95(1), 300-307.
Hvid, H., Fels, J. J., Kirk, R. K., Thorup, I., Jensen, H. E., Hansen, B. F., et al. (2011). In situ phosphorylation of Akt and ERK1/2 in rat mammary gland, colon, and liver following treatment with human insulin and IGF-1. Toxicologic Pathology, 39(4), 623-640.
Jenkins, R. R. (1988). Free radical chemistry. Relationship to exercise. Sports Medicineicine, 5(3), 156-170.
Ji, L. L. (1993). Antioxidant enzyme response to exercise and aging. Medicine and Science in Sports and Exercise, 25(2), 225-231.
Ji, L. L., & Fu, R. (1992). Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. Journal of Applied Physiology, 72(2), 549-554.
Ji, L. L., Fu, R., & Mitchell, E. W. (1992). Glutathione and antioxidant enzymes in skeletal muscle: effects of fiber type and exercise intensity. Journal of Applied Physiology, 73(5), 1854-1859.
Kahn, C. R. (1978). Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism: Clinical and Experimental, 27(12 Suppl 2), 1893-1902.
Kim, J., Wende, A. R., Sena, S., Theobald, H. A., Soto, J., Sloan, C., et al. (2008). Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol, 22(11), 2531-2543.
Klotz, L. O., Schieke, S. M., Sies, H., & Holbrook, N. J. (2000). Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. The Biochemical Journal, 352 Pt 1, 219-225.
Konishi, H., Matsuzaki, H., Tanaka, M., Takemura, Y., Kuroda, S., Ono, Y., et al. (1997). Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Letters, 410(2-3), 493-498.
Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., et al. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419(6904), 316-321.
Kriketos, A. D., Gan, S. K., Poynten, A. M., Furler, S. M., Chisholm, D. J., & Campbell, L. V. (2004). Exercise increases adiponectin levels and insulin sensitivity in humans. Diabetes Care, 27(2), 629-630.
Kriska, A. M., LaPorte, R. E., Pettitt, D. J., Charles, M. A., Nelson, R. G., Kuller, L. H., et al. (1993). The association of physical activity with obesity, fat distribution and glucose intolerance in Pima Indians. Diabetologia, 36(9), 863-869.
Laron, Z. (1984). Laron-type dwarfism (hereditary somatomedin deficiency): a review. Ergebnisse der Inneren Medizin und Kinderheilkunde, 51, 117-150.
Laron, Z. (1999). Natural history of the classical form of primary growth hormone (GH) resistance (Laron syndrome). Journal of Pediatric Endocrinology & Metabolism, 12 Suppl 1, 231-249.
Lass, A., Sohal, B. H., Weindruch, R., Forster, M. J., & Sohal, R. S. (1998). Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radical Biology & Medicine, 25(9), 1089-1097.
Laviola, L., Natalicchio, A., & Giorgino, F. (2007). The IGF-I signaling pathway. Current Pharmaceutical Design, 13(7), 663-669.
Lockwood, D. H., Hamilton, C. L., & Livingston, J. N. (1979). The influence of obesity and diabetes in the monkey on insulin and glucagon binding to liver membranes. Endocrinology, 104(1), 76-81.
Lohmann, D., Liebold, F., Heilmann, W., Senger, H., & Pohl, A. (1978). Diminished insulin response in highly trained athletes. Metabolism, 27(5), 521-524.
Lopez-Torres, M., Gredilla, R., Sanz, A., & Barja, G. (2002). Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radical Biology & Medicine, 32(9), 882-889.
Lu, S. C., Tsukamoto, H., & Mato, J. M. (2002). Role of abnormal methionine metabolism in alcoholic liver injury. Alcohol, 27(3), 155-162.
Malloy, V. L., Krajcik, R. A., Bailey, S. J., Hristopoulos, G., Plummer, J. D., & Orentreich, N. (2006). Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell, 5(4), 305-314.
Mattison, J. A., Lane, M. A., Roth, G. S., & Ingram, D. K. (2003). Calorie restriction in rhesus monkeys. Experimental Gerontology, 38(1-2), 35-46.
McCarty, M. F., Barroso-Aranda, J., & Contreras, F. (2009). The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Medical Hypotheses, 72(2), 125-128.
McKoy, G., Leger, M. E., Bacou, F., & Goldspink, G. (1998). Differential expression of myosin heavy chain mRNA and protein isoforms in four functionally diverse rabbit skeletal muscles during pre- and postnatal development. Developmental Dynamics, 211(3), 193-203.
Michael, M. D., Kulkarni, R. N., Postic, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., et al. (2000). Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Molecular Cell, 6(1), 87-97.
Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., & Smith-Wheelock, M. (2005). Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell, 4(3), 119-125.
Moses, A. C., Young, S. C., Morrow, L. A., O'Brien, M., & Clemmons, D. R. (1996). Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes, 45(1), 91-100.
Moskovitz, J., Bar-Noy, S., Williams, W. M., Requena, J., Berlett, B. S., & Stadtman, E. R. (2001). Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 12920-12925.
Murphy, C. T. (2006). The search for DAF-16/FOXO transcriptional targets: approaches and discoveries. Experimental Gerontology, 41(10), 910-921.
Nassis, G. P., Papantakou, K., Skenderi, K., Triandafillopoulou, M., Kavouras, S. A., Yannakoulia, M., et al. (2005). Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism, 54(11), 1472-1479.
Navarro, A., Gomez, C., Lopez-Cepero, J. M., & Boveris, A. (2004). Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 286(3), R505-511.
Nemoto, S., & Finkel, T. (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science, 295(5564), 2450-2452.
Novosyadlyy, R., Dudas, J., Pannem, R., Ramadori, G., & Scharf, J. G. (2006). Crosstalk between PDGF and IGF-I receptors in rat liver myofibroblasts: implication for liver fibrogenesis. Laboratory Investigation; a Journal of Technical Methods and Pathology, 86(7), 710-723.
Orentreich, N., Matias, J. R., DeFelice, A., & Zimmerman, J. A. (1993). Low methionine ingestion by rats extends life span. The Journal of Nutrition, 123(2), 269-274.
Owens, S., Gutin, B., Allison, J., Riggs, S., Ferguson, M., Litaker, M., et al. (1999). Effect of physical training on total and visceral fat in obese children. Medicine and Science in Sports and Exercise, 31(1), 143-148.
Pan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., et al. (1997). Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20(4), 537-544.
Parkhouse, W. S., Willis, P. E., & Zhang, J. (1995). Hepatic Lipid-Peroxidation and Antioxidant Enzyme Responses to Long-Term Voluntary Physical-Activity and Aging. Age, 18(1), 11-17.
Partridge, L., & Bruning, J. C. (2008). Forkhead transcription factors and ageing. Oncogene, 27(16), 2351-2363.
Peng, S. L. (2008). Foxo in the immune system. Oncogene, 27(16), 2337-2344.
Peng, Y., Rideout, D., Rakita, S., Lee, J., & Murr, M. (2012). Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver. Surgery for Obesity and Related Diseases, 8(1), 73-81.
Peng, Y., Sigua, C. A., & Murr, M. M. (2011). Protein kinase C-zeta mediates apoptosis of mouse Kupffer cells via ERK-1/2: a novel mechanism. Surgery, 149(1), 135-142.
Radak, Z., Naito, H., Kaneko, T., Tahara, S., Nakamoto, H., Takahashi, R., et al. (2002). Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Archiv : European Journal of Physiology, 445(2), 273-278.
Renehan, A. G., Zwahlen, M., Minder, C., O'Dwyer, S. T., Shalet, S. M., & Egger, M. (2004). Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet, 363(9418), 1346-1353.
Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., & Zimmerman, J. A. (1994). Methionine restriction increases blood glutathione and longevity in F344 rats. The FASEB Journal, 8(15), 1302-1307.
Roddam, A. W., Allen, N. E., Appleby, P., Key, T. J., Ferrucci, L., Carter, H. B., et al. (2008). Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Annals of Internal Medicine, 149(7), 461-471, W483-468.
Salminen, A., & Kaarniranta, K. (2009). NF-kappaB signaling in the aging process. Journal of Clinical Immunology, 29(4), 397-405.
Salminen, A., & Kaarniranta, K. (2010). Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaB signaling. Cellular Signalling, 22(4), 573-577.
Salminen, A., Ojala, J., Huuskonen, J., Kauppinen, A., Suuronen, T., & Kaarniranta, K. (2008). Interaction of aging-associated signaling cascades: inhibition of NF-kappaB signaling by longevity factors FoxOs and SIRT1. Cellular and Molecular Life Sciences, 65(7-8), 1049-1058.
Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., & Barja, G. (2006). Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. The FASEB Journal, 20(8), 1064-1073.
Sanz, A., Caro, P., & Barja, G. (2004). Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. Journal of Bioenergetics and Biomembranes, 36(6), 545-552.
Sanz, A., Caro, P., Ibanez, J., Gomez, J., Gredilla, R., & Barja, G. (2005). Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. Journal of Bioenergetics and Biomembranes, 37(2), 83-90.
Sanz, A., Caro, P., Sanchez, J. G., & Barja, G. (2006). Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage. Annals of the New York Academy of Sciences, 1067, 200-209.
Sanz, A., Gomez, J., Caro, P., & Barja, G. (2006). Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. Journal of Bioenergetics and Biomembranes, 38(5-6), 327-333.
Saunderson, C. L., & Mackinlay, J. (1990). Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. The British Journal of Nutrition, 63(2), 339-349.
Scheett, T. P., Nemet, D., Stoppani, J., Maresh, C. M., Newcomb, R., & Cooper, D. M. (2002). The effect of endurance-type exercise training on growth mediators and inflammatory cytokines in pre-pubertal and early pubertal males. Pediatric Research, 52(4), 491-497.
Shimizu, M., Shirakami, Y., Sakai, H., Yasuda, Y., Kubota, M., Adachi, S., et al. (2010). (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chemico-Biological Interactions, 185(3), 247-252.
Shirakami, Y., Shimizu, M., Adachi, S., Sakai, H., Nakagawa, T., Yasuda, Y., et al. (2009). (-)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Science, 100(10), 1957-1962.
Sohal, R. S., Ku, H. H., Agarwal, S., Forster, M. J., & Lal, H. (1994). Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mechanisms of Ageing and Development, 74(1-2), 121-133.
Sonoda, Y., Watanabe, S., Matsumoto, Y., Aizu-Yokota, E., & Kasahara, T. (1999). FAK is the upstream signal protein of the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line. The Journal of Biological Chemistry, 274(15), 10566-10570.
Sun, L., Sadighi Akha, A. A., Miller, R. A., & Harper, J. M. (2009). Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. The journals of gerontology. Series A, Biological Sciences and Medical Sciences, 64(7), 711-722.
Sun, L., Shen, W., Liu, Z., Guan, S., Liu, J., & Ding, S. (2010). Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life Sciences, 86(1-2), 39-44.
Svensson, J., Sjogren, K., Faldt, J., Andersson, N., Isaksson, O., Jansson, J. O., et al. (2011). Liver-derived IGF-I regulates mean life span in mice. PloS One, 6(7), e22640.
Tothova, Z., Kollipara, R., Huntly, B. J., Lee, B. H., Castrillon, D. H., Cullen, D. E., et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell, 128(2), 325-339.
van der Horst, A., & Burgering, B. M. (2007). Stressing the role of FoxO proteins in lifespan and disease. Nature reviews. Molecular Cell Biology, 8(6), 440-450.
Vogt, W. (1995). Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radical Biology & Medicine, 18(1), 93-105.
Wakai, K., Suzuki, K., Ito, Y., Watanabe, Y., Inaba, Y., Tajima, K., et al. (2009). Time spent walking or exercising and blood levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3): A large-scale cross-sectional study in the Japan Collaborative Cohort study. Asian Pacific Journal of Cancer Prevention, 10 Suppl, 23-27.
Waly, M., Olteanu, H., Banerjee, R., Choi, S. W., Mason, J. B., Parker, B. S., et al. (2004). Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Molecular Psychiatry, 9(4), 358-370.
Wang, Li, D., & Sun, F. (2004). Dietary caloric restriction may delay the development of cataract by attenuating the oxidative stress in the lenses of Brown Norway rats. Experimental Eye Research, 78(1), 151-158.
Wang, Weindruch, R., Fernandez, J. R., Coffey, C. S., Patel, P., & Allison, D. B. (2004). Caloric restriction and body weight independently affect longevity in Wistar rats. International Journal of Obesity and Related Metabolic Disorders, 28(3), 357-362.
Wang, X., McCullough, K. D., Franke, T. F., & Holbrook, N. J. (2000). Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. The Journal of Biological Chemistry, 275(19), 14624-14631.
Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. The Journal of Clinical Investigation, 115(5), 1111-1119.
Wieczorek-Baranowska, A., Nowak, A., Michalak, E., Karolkiewicz, J., Pospieszna, B., Rutkowski, R., et al. (2011). Effect of aerobic exercise on insulin, insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in overweight and obese postmenopausal women. The Journal of Sports Medicineicine and Physical Fitness, 51(3), 525-532.
Williamson, D. L., Raue, U., Slivka, D. R., & Trappe, S. (2010). Resistance exercise, skeletal muscle FOXO3A, and 85-year-old women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65(4), 335-343.
Wilmore, J. H., Despres, J. P., Stanforth, P. R., Mandel, S., Rice, T., Gagnon, J., et al. (1999). Alterations in body weight and composition consequent to 20 wk of endurance training: the HERITAGE Family Study. The American Journal of Clinical Nutrition, 70(3), 346-352.
Yakar, S., Rosen, C. J., Beamer, W. G., Ackert-Bicknell, C. L., Wu, Y., Liu, J. L., et al. (2002). Circulating levels of IGF-1 directly regulate bone growth and density. The Journal of Clinical Investigation, 110(6), 771-781.
Yu, H., & Rohan, T. (2000). Role of the insulin-like growth factor family in cancer development and progression. Journal of the National Cancer Institute, 92(18), 1472-1489.
Zhu, M., de Cabo, R., Lane, M. A., & Ingram, D. K. (2004). Caloric restriction modulates early events in insulin signaling in liver and skeletal muscle of rat. Annals of the New York Academy of Sciences, 1019, 448-452.


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw