進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201200053500
論文名稱(中文) 利用高分子及奈米碳管製作觸控模組透明導電膜之研究
論文名稱(英文) A study of conductive polymer and CNT transparent conduction layer for application of touch sensor
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 王啟任
研究生(英文) Chi-Jen Wang
學號 vb6992020
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-李文熙
召集委員-呂英宗
口試委員-呂英誠
口試委員-曾弘毅
口試委員-胡邵喻
中文關鍵字 奈米碳管  導電高分子  透明導電膜  觸控面板 
英文關鍵字 Carbon nanotube  CNT  Transparent conductive film  Touch panel 
學科別分類
中文摘要 ITO透明導電膜薄膜由於銦礦的逐漸枯竭,成本也跟著水漲船高,而對顯示器領域來說透明導電極為不可或缺之關鍵材料,因此替代性的研究也成為一門顯學,奈米碳管有良好的高結晶性、耐化學性、強機械度與良好的導電性,而導電高分子也可以實驗耐彎曲及高透光之目的,本研究除探討奈米碳管添加導電高分子的效果並實際利用調配好之奈米碳管油墨來製作透明導電膜,並且以此基礎設計9.7”之觸控面板,並測試其功能以驗證奈米碳管添加導電性高分子對於製作透明導電膜的可行性。
由研究中可得到0.2WT%CNT+乙醇胺3%+3%Binder並使用超音波震盪1hr於本研究中有較好的分散效果,且使用該分散後奈米碳管與市售Clevios PH500以1:1的比例的添加可以證明奈米碳管加上導電高分子可以有效提高導電性並且以濕膜塗佈厚度20.57um;乾膜測得厚度為4.2um可以製做出258Ω/□面電阻,其導電率為6.14x102 S/cm之透明導電膜,透光度可達88%左右,雖然在同樣基礎下光學特性仍不及ITO等材料,但是對於成本及製程上具有一定之優勢,本研究同時發現塗佈越厚阻抗越低但是透光越差。而濕膜厚大於32um則會開始內縮且團聚,小於14um則阻值表現不穩定。
本研究就光學及電性做探討,並實際使用Solomon的SSD2533 IC製作做出9.7”觸控面板,且經驗證可以做動。雖然現有文獻指出奈米碳管具有良好機械特性及耐化學性等特性,但是對於環測等耐候試驗,例如高溫高濕、冷熱沖擊、高低溫保存、耐溶劑、水煮或鹽霧測試等本研究並無著墨,因此沒有根據來證明其耐用性,因為要達商業化應用在耐環測測試上是重要的項目,因此可以做為後續研究,進行補強奈米碳管對於顯示器領域上應用的可行性。另外在圖案化加工上亦需要有良好的方式,如此才有機會被大量應用並且商業化。
英文摘要 ITO transparent conductive film due to the gradual depletion of indium ore and the cost continued to rise. The transparent conductive extremely indispensable material for the display area, so alternative research has also become a study. Carbon nanotubes have high crystallinity, chemical resistance, strong mechanical level and good electrical conductivity. The conductive polymer can experiment with resistance to bending and high transmittance purpose of this study. In addition, to explore the effect of carbon nanotubes add in conductive polymer, and the actual utilization of deployment of good ink of carbon nanotubes to make transparent conductive film. Under this basic, I design 9.7 "touch panel and test the feasibility of adding carbon nanotubes into conductive polymer for the production of transparent conductive film.
From the research, I found that 0.2WT% CNT plus the 3% ethanol amines with 3% binder for one hour get good dispersion effect by supersonic. Clevios PH500 and the dispersion obtained from the study prove that the proportion of adding carbon nanotubes and conductive polymer can effectively improve the electrical conductivity. The wet film coating 20.57um thickness; the dry film thickness measurement is 4.2um and makes the transparent conductive film surface resistance of 258Ω / □, the conductivity of 6.14x102 S / cm, and the light transmission up to about 88%. Although under the same basic, the optical properties still not good as ITO material, but there are advantages on cost and process. This study also found that thicker coating makes lower impedance but worse transparency. The wet film will start to shrink and reunion when thickness is greater than 32um and resistance performance will instability if less than 14um.
This study investigated the optical and electrical properties, and the actual use of Solomon's SSD2533 IC production to make a 9.7 "touch panel and works well have been proven. Literatures indicate that carbon nanotubes have good mechanical properties and chemical resistance features, but for the resistance of the environment test and other tests, such as high temperature and humidity, thermal shock, high cryopreservation solvent, boiled, and salt spray test of this study does not pass. Therefore, no basis to prove their durability, up to commercial applications is an important project in the environment measured resistance testing can be used as a follow-up study. More researches are needed for the feasibility of reinforcing carbon nanotubes applications in the display field. In addition, the patterns of processing also need to have a better way to gain a chance to be a large number of applications and commercialization.
論文目次 摘要…………………………………………………………………I
Abstract…………………………………………………………………III
致謝…………………………………………………………………V
目錄…………………………………………………………………VI
表目錄…………………………………………………………………VIII
圖目錄…………………………………………………………………X

目錄
第一章 緒論…………………………………………………………………1
1-1 研究背景………………………………………………………1
1-2 研究動機………………………………………………………1
1-3 研究範圍與目的………………………………………………2
第二章 文獻探討……………………………………………………………3
2-1 透明導電膜……………………………………………………3
2-2 奈米碳管………………………………………………………5
2-2-1 單層奈米碳管…………………………………………6
2-2-2 雙層或多層奈米碳管結構及特性……………………10
2-2-3 奈米碳管的分散………………………………………12
2-2-4 奈米碳管的塗佈………………………………………14
2-3 導電高分子……………………………………………………15
2-4 現有替代材料比較……………………………………………17
2-5 觸控面板的分類及比較………………………………………21
2-5-1 電阻式…………………………………………………21
2-5-2 電容式…………………………………………………25
2-5-3 音波式…………………………………………………27
2-5-4 紅外線式………………………………………………27
2-5-5 發展趨勢比較…………………………………………28
第三章 研究方法……………………………………………………………31
3-1 研究步驟說明…………………………………………………31
3-2 實驗儀器………………………………………………………33
3-3 實驗使用材料…………………………………………………36
3-4 選用IC並設計9.7”電容觸摸屏圖案………………………41
第四章 實證分析……………………………………………………………50
4-1 製作添加導電高分子之奈米碳管透明導電膜………………50
4-2 分散及沉降試驗………………………………………………50
4-3 添加導電高分子奈米碳管透明導電膜數具量測及討論……55
4-4 小結……………………………………………………………63
4-5 9.7”奈米碳管觸控面板及ITO電性量測比較………………64
4-6 9.7”奈米碳管觸控面板作動測試……………………………67
第五章 結論及建議…………………………………………………………71
5-1 結論…………………………………………………………71
5-2 後續研究及建議………………………………………………72
參考文獻……………………………………………………………………74

表目錄
表 2-1 透明導電膜的應用………………………………………………………4
表 2-2 透明導電膜之材質分類……………………………………………… 19
表2-3透明導電膜比較………………………………………………………20
表2-4各觸控技術整理比較表………………………………………………29
表3-1 線棒規格表…………………………………………………………33
表3-2 TNST規格表…………………………………………………………37
表3-3 CLEVIOS PH500規格表……………………………………………39
表3-4 CLEVIOS與ITO特性比較表………………………………………40
表3-5 7-10 Inch Touch Panel Characteristics…………………………41
表3-6 標準阻抗範圍試算結果……………………………………………44
表3-7 最大阻抗範圍試算結果……………………………………………45
表4-1 使用線棒規格表……………………………………………………50
表4-2 自調UV膠比例………………………………………………………51
表4-3 分散實驗參數………………………………………………………52
表4-4 Binder添加參數……………………………………………………53
表4-5 0.2WT% CNT製作透明導電膜之量測數據…………………………55
表4-6 0.2WT%CNT: CLEVIOS PH500=9:1透光與阻抗數據……………57
表4-7 0.2WT%CNT: CLEVIOS PH500=9:1透光與阻抗數據……………58
表4-8 0.2WT%CNT: CLEVIOS PH500=2:1透光與阻抗數據……………59
表4-9 0.2WT%CNT: CLEVIOS PH500=1:1透光與阻抗數據……………60
表4-10 0.2WT%CNT: CLEVIOS PH500=2:3透光與阻抗數據……………61
表4-11 0.2WT%CNT: CLEVIOS PH500=1:2透光與阻抗數據……………62
表4-12 ITO與CNT,導電高分子等透光及阻抗比較………………………64
表4-13 使用ITO film做成之9.7”Data…………………………………65
表4-14使用CNT+PDOT/PSS製作9.7”觸控面板Data……………………68
表4-15 本研究製作出9.7”觸控sensor判讀輸出………………………70

圖目錄
圖 2-1 典型ITO 薄膜穿透率、反射率以及吸收率的光譜圖…………………4
圖 2-2 單晶石墨之晶體結構…………………………………………………5
圖 2-3 zigzag、armchair、chiral三種結構………………………………7
圖 2-4 單層奈米碳管三種不同的結構………………………………………8
圖 2-5 單層奈米碳管之結構…………………………………………………9
圖 2-6 多層碳管之結構,(a)Russian doll,(b)Swiss doll……………11
圖 2-7 奈米碳管震盪時間對平均碳管長度作圖…………………………12
圖 2-8共聚高分子PAA與PS非共價改質奈米碳管………………………13
圖 2-9 膜厚與穿透率的關係圖……………………………………………15
圖2-10 不同種類CNT 及ITO 之膜厚與電阻關係圖……………………15
圖2-11 (a)PEDOT(b)PSS…………………………………………………..16
圖2-12 導電高分子圖案化方法……………………………………………17
圖2-13目前各種非ITO透明導電技術現況及進展……………21
圖2-14 電阻式作動原理……………………………………………………22
圖2-15 電阻式觸控面板分類………………………………………………24
圖2-16 電阻式觸控面板結構總類…………………………………………24
圖2-17 電容觸控屏原理……………………………………………………26
圖2-18 電容變化示意圖……………………………………………………26
圖2-19 觸摸面板相關技術魚骨圖…………………………………………30
圖3-1 研究流程圖…………………………………………………………32
圖3-2 線棒塗佈機…………………………………………………………34
圖3-3 四點探針……………………………………………………………35
圖3-4 霧度計………………………………………………………………35
圖3-5 水滴接觸角量測儀…………………………………………………36
圖 3-6 TimetubeTM奈米碳管TEM及SEM圖……………………………37
圖3-7 聚乙烯吡咯烷酮結構式……………………………………………38
圖3-8 乙醇胺結構式………………………………………………………38
圖3-9 (a)PEDOT(b)PSS……………………………………………………40
圖3-10 尺寸定義……………………………………………………………42
圖3-11 結構及間距設計定義………………………………………………42
圖3-12 菱形圖案等效阻抗計算……………………………………………43
圖3-13 31sense x 23Driver 觸控pattern設計一………………………46
圖3-14 31sense x 23Driver 觸控pattern設計二………………………46
圖3-15 Reference Schematic using QFN48………………………………48
圖3-16 觸控面板功能運作圖………………………………………………49
圖3-17 Booster Configuration……………………………………………49
圖4-1 添加3%及5%乙醇胺沉降試驗結果…………………………………53
圖4-2 分散及未分散之SEM圖比較…………………………………54
圖4-3 CNT添加奈米銀之SEM圖…………………………………55
圖4-4 0.2WT% CNT透光與阻抗關係圖……………………………………56
圖4-5 0.2WT%CNT: CLEVIOS PH500=9:1透光與阻抗關係圖…………57
圖4-6 0.2WT%CNT: CLEVIOS PH500=4:1透光與阻抗關係圖…………58
圖4-7 0.2WT%CNT: CLEVIOS PH500=2:1透光與阻抗關係圖…………59
圖4-8 0.2WT%CNT: CLEVIOS PH500=1:1透光與阻抗關係圖…………60
圖4-9 0.2WT%CNT: CLEVIOS PH500=2:3透光與阻抗關係圖…………61
圖4-10 0.2WT%CNT: CLEVIOS PH500=1:2透光與阻抗關係圖…………63
圖4-11 使用ITO film做成之9.7”電容顯示……………………………66
圖4-12使用ITO film五指觸控時感應圖…………………………………66
圖4-13 使用CNT+PH500做成之9.7”電容顯示圖………………………69
圖4-14使用CNT+PH500做成之9.7”於五指觸摸時電容顯示圖………69
圖4-15 雜訊干擾……………………………………………………………70
參考文獻 [1] A.J. Steckl and G. Mohammed, “The Effect of Ambient Atmosphere in the Annealing ofIndium Tin Oxides Films”, J. Appl. Phys.,51(7), 3890-3895.1980.
[2] Toki Motoyuki, Aizawa Mamoru,“Sol-gel formation of ITO thin films from
a sol including ITO power”, Journal of Sol-Gel Science and Technology,
717~720, 1995.
[3] Hokkaido Univ, "Preparation of ITO thin films by sol-gel method" ,Journal of the Ceramic Society Japan,102,202~207,1994.
[4] Indian Inst of Technology, "Photovoltaic properties of indium tin
oxide(ITO)/silicon junction prepared by spray pyrolysis, Dependence on
oxidation time", Semiconductor Science and Technology,7(1992) 1471~1475.
[5]Indian Inst of Technology, "Photovoltaic properties of spray pyrolytic
grown indium tin oxide(ITO)/silicon junction-dependence on substrate
temperature ”Semiconductor Science and Technology, 7(1992)1471~1475.
[6] J. C. Manifacier and J. P. Fillard," Deposition of In2O3-SnO2 Layer on glass substrate using a spraying method", Thin Solid Films,76 (1981)89~95.
[7] M.Bender, W.Seelig, C.Daube, H.Frankenberger, B.Ocker, J.Stollenwerk “ Dependenceof oxygen flow on optical and electrical properties of DC-magnetron”, Thin solid Films 326.72-77,1998.
[8] C.Choi., W.J. Lee, J.K., S.O. Jung, W.J. Lee, W.S. Kim, S.J. Kim, C. Yoon“ Effects ofoxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering”, Thin solid Films 258.274-278, 1995.
[9] A.N.H. Al-Ajili, S.C. Bayliss“ A study of the optical, electrical and structural properties ofreactively sputtered InOx and ITOx thin films”, Thin solid Films 305, 116-123, 1997.
[10] S. K. Choi and J. I. Lee “Effect of film density on electrical properties of indium tin oxidefilms deposited by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A, Vol. 19,2043-2047, 2001.
[11] H. Kim, C. M. Gilmore, ”Electrical,optical,and structure properties of indium-tin-oxide thin films for organic light-emitting devices”, Journal of Applied Physics,86(1999)6451~6461
[12] C. Countal, A. Azema,J. C. Roustan,”Fabrication and characterization of ITO films deposited by excimer laser evaporation”, Thin Solid Films, 288(1996)248~253.
[13] L. R. O. Cruz, O. j. Santos,”Electrical properties of ITO films deposited by activited reactive evaporation “,Matericals Letters,12 (1991)72~76.
[14] Jin Ma, Zhang, et al., ”Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature “,Applied Surface Science, 19(1998)198~201.
[15] H. Kim, C. M. Gilmore, ”Electrical, optical, and structure properties of indium-tin-oxide thin films for organic light-emitting devices”, Journal of Applied Physics,86 (1999)6451~6461.
[16] Je-Hsiung Lan, Kanicki Jerzy, ”ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools”, Thin Solid Films,304 (1997)123~129.
[17] Watkins-Johnsons Co, ”Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD”, Thin Solid Films,221(1992),166~182.
[18] E. Yadin, V. Kozlov, and E. Machevskis “Recent Developments in the Deposition of ITO and AR Coatings”, 2003 Society of Vacuum Coaters ,46th Annual Technical Conference Proceedings, 185-189, 2003
[19] T.Minami, H.Sonohara, T.Kakumu, S.Takata“ Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering”, Thin solid Films 270, 37-42,1995.
[20] V. Craciun, D. Craciun, X. Wang, T. J. Anderson, R. K. Singh “ Transparent and conducting indium tin oxide thin films grown by pulsed laser deposition at low temperatures”, Journal of Optoelectronics and Advanced Materials Vol. 5, No. 2, 401-408, 2003.
[21] A.Amaral, P.Brogueira, C.Nunes de Carvalho, G.Lavareda“Influence of the initial layers on the optical and electrical properties of ITO films” Optical Materials 17, 291-294, 2001.
[22] T.Minami, H.Sonohara, T.Kakumu, S.Takata“ Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering”, Thin solid Films 270, 37-42, 1995.
[23] J. Matthijn Dekkers, Guus Rijnders, and Dave H. A. Blank “Role of Sn doping in In2O3 thin films on polymer substrates by pulsed-laser deposition at room temperature”, APPLIED PHYSICS LETTERS 88, 2006.
[24] K.UTSUMI, H.IIGUSA “The Effect of SnO2 Concentration on the Electrical and Optical Properties of In2O3-SnO2 Films”, TOSOH Research & Technology Review Vol.47, 2003
[25] S.Takahashi, M.Ikeda, H.Watnabe “Sputtering target for forming high-resistance transparent conductive film, and method for producing the film”, United States Patent US 2004/0231981 A1, Nov.25, 2004.
[26] C.Weeks “Carbon nanotube transparent electrodes for touch screens”, Veritas et Visus, Touch Panel, 34-37,Oct,2006.
[27] T. W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press, 1997.
[28] S. Iijima, Nature(London) 354(1991), 56.
[29] 成會明(2004)奈米碳管。五南圖書出版股份有限公司,台北市,676頁。
[30] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33(1995),883.
[31] Chen, L. C., K. H. Chen, S. L. Wei, P. D. Kichambare, J. J. Wu, T. R. Lu and C. T. Kuo,“Crystalline SiCN: a hard material rivals to cubic BN”, Thin Solid Films 355-356 (1999)
[32] Chen, L. C., C. T. Wu, J. J. Wu and K. H. Chen, “Growth, characterization, andproperties of carbon nitride with and without silicon addition”, Inter. J. Mon. Phys. B14(2000) 333-348.
[33] Chen, P., X. Wu, J. Lin and K. L. Tan, “High H2 uptake by alkali-doped carbonnanotubes under ambient pressure and moderate temperatures”, Science 285 (1999)91-93.
[34] Chi, R. P. (Ed.), Tribology Materials JongSa Corp., Taiwan, 1984. 112-116.
[35] SJ Tans, MH Devoret, HJ Dai, A Thess, RE Smalley, LJ Geerligs, C Dekker,Nature, 386(1997) 474.
[36]Jin, Y., and F. G. Yuan (2003) Simulation of elastic properties of single-walled carbon nanotubes. Composites Science and Technology 63:1507-1515.
[37]Thio (1996) Electrical conductivity of individual carbon nanotubes. Nature 382: 54-56.
[38] N. Hamada, S. Sawada, and A. Oshiyama, Physical Review Letters,68(1992), 1579.
[39]Ebbesen, T. W., H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T.Van Landuyt, Science, 267(1995), 1334.
[40] Zhang, Z., J. Peng, and H. Zhang (2001) Low-temperature resistance ofindividual single-walled carbon nanotubes: A theoretical estimation.Applied Physics Letters 79(21): 3515-3517.
[41] Celii, F. G., P. E. Pehrsson, H. –t. Wang and J. E. Butler, “Infrared detection of gaseousspecies during the filament-assisted growth of diamond”, Appl. Phys. Lett. 52 (1988)2043-2045.
[42]Cox, D. and S. T. Picraux, Application: Energy and Chemical Industries, in Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology Research and Development in the Next Decade, WTEC, Loyola College, Maryland, September (1999).
[43] H. Dai, E. W. Wong, and C. M. Lieber, Science, 272(1996), 523.
[44]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi,and T. Thio, Nature, 382(1996), 54.
[45]曲喜新,楊邦朝,姜節儉, 電子薄膜材料. 北京科學出版社 (1996).
[46]鄧至均,黃彥瑋,馬振基, 奈米碳管之分散及表面官能基化技術. 化工資訊與商情 75, 26-36 (2009).
[47]Huang, W., Lin, Y., Taylor, S., Gaillard, J., Rao, A. M., and Sun, Y. P., Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Letters 2 (3), 231-234 (2002).
[48]Kang, Y. and Taton, T. A., Micelle-encapsulated carbon nanotubes: a route to nanotube composites. Journal of the American Chemical Society 125 (19), 5650-5651 (2003).
[49]Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., and Huffman, C. B.,Fullerene pipes. Science 280 (5367), 1253 (1998).
[50]Fan, S., Jiang, K., Liu, K., Liu, L., Zhai, Y., Zhao, Q., Fan, S. S., Jiang, K. L., Zhai, Y. C., and Zhao, Q. Y.,Carbon nanotube composite material used as transparent conductive film, comprises several carbon nanotubes in which ends are joined together by van der Waals attractive force and conductive coating layer disposed on carbon nanotube Patent No. EP2085976-A1 (2009).
[51]Green, A. A., Hersam, M. C., Green, A., and Hersam, M.,Colored transparent conductive film comprises single-walled carbon nanotubes, and has a visible color, and specified average transmittance in the visible spectrum and sheet resistance Patent No. US2009061194-A1 (2009).
[52] Kawahara, Y. and Takada, H.,Electroconductive composition used for electroconductive film for transparent electrodes and touch panel, contains conductive polymer, ionic liquid, and carbon nanotube having abundance of primary particles above specified value Patent No. JP2009035619-A (2009).
[53]Shimizu, K.,Transparent conductive film for optical device e.g. touch panel, has carbon nanotube layer that is contacted and laminated with electroconductive polymeric layer Patent No. JP2009211978-A (2009).
[54]Kaempgen, M., Duesberg, G. S., and Roth, S., Transparent carbon nanotube coatings. Applied Surface Science 252 (2), 425-429(2005).
[55] Kawahara, Y. and Takada, H.,Electro-conductive composition used for electro-conductive film for transparent electrodes and touch panel, contains conductive polymer, ionic liquid, and carbon nanotube having abundance of primary particles above specified value Patent No. JP2009035619-A (2009).
[56]Minami, T., New n-type transparent conducting oxides. MRS Bulletin 25 (8), 38-44 (2000).
[57]Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doan, S., Avrutin, V., Cho, S. J., and Morkoc, H., A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301 (2005).
[58]www.clevios.com
[59]http://www.amtouch.com.tw/tw/products/projected-capacitive-touch-screen/basics/
[60] http://www.candotec.com/touch.html
[61] http://clevios.com/en/home/clevios-homepage.aspx
[62]http://www.hcstarck.com/
[63]http://clevios.com/en/home/clevios-homepage.aspx
[64]http://www.piip.pro/index.php/zw/database/touchpanel
[65]Solomon Systec SSD2533 Application Note_0.14
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw