進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2208201117561000
論文名稱(中文) 應用於多個自由活動大鼠之無線即時多通道生理訊號監測系統
論文名稱(英文) A Wireless Real-Time Multichannel Physiological Signal Monitoring System for Multiple Freely Moving Rats
校院名稱 成功大學
系所名稱(中) 資訊工程學系碩博士班
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 鄧海茵
研究生(英文) Hai-Yin Teng
學號 P76984089
學位類別 碩士
語文別 英文
論文頁數 47頁
口試委員 指導教授-張大緯
口試委員-梁勝富
口試委員-楊中平
口試委員-蕭富仁
中文關鍵字 無線近身網路  腦電波  自由活動大鼠  分時多工存取  時間同步 
英文關鍵字 Wireless body area network (WBAN)  electroencephalography (EEG)  freely moving rat  TDMA  time synchronization 
學科別分類
中文摘要 連續的多通道腦電波監測是癲癇病的重要臨床診斷。在臨床實務上,影像加腦波監測是偵測癲癇發作的黃金準則,但分析長期錄製的影像資料對專家來說相當耗時,而且影像亦難以靠電腦來做自動判讀。加速規加腦波監測可成為影像加腦波監測的替代解決方案。雖然將無線近身網路(WBAN)應用在連續監測不僅降低醫院的醫療成本,更可以提昇病患生活品質,但是身體或多個網路節點(nodes)的移動是造成封包在無線近身網路中遺失的一大原因。因此,對無線近身網路來說,可靠地協調無線資料傳輸及確保收到的資料有一定程度的完整度是一大挑戰。

在這篇論文中我們提出了一套無線即時多通道生理訊號監測系統。本系統可量測多隻自由移動之癲癇大鼠的腦電波以及動作訊號。本系統可達到長期監測的功能。生理訊號可透過IEEE 802.15.4的通訊技術無線傳輸至使用者介面即時顯示。為了省電以及高頻寬,本系統實作了分時多工存取(TDMA)協定。此外,我們也提出一個低負擔的時間同步方法能動態調整傳送端的時間,而且不需額外的同步訊息,也不需要對振盪器頻率做事前的量測。我們的系統已證明可成功的在多隻自由移動的大鼠上運作,並且在連續24小時的監測中達到99%以上的資料完整度。
英文摘要 Continuous multichannel electroencephalography (EEG) monitoring is crucial for clinical diagnosis in epilepsy. In clinical practice, video/EEG monitoring is the golden standard for seizure detection, but analyzing long-term video images are time-consuming for experts and the video images are difficult to interpret automatically by computers. Accelerometer/EEG monitoring can be an alternative solution for video/EEG monitoring. Although applying wireless body area network (WBAN) to continuous monitoring not only reduces medical costs in hospitals but also improves the quality of patients’ lives, moving body or multiple moving nodes contributes to most of packet losses in WBAN. Hence, reliably coordinating wireless links between multiple moving nodes and guaranteeing integrity of received data are challenging issues for WBAN.

In this thesis, we propose a wireless real-time multichannel physiological signal monitoring system designed for measuring EEG and motion signals from multiple freely moving epileptic rats. The proposed system is capable of long-term continuous monitoring. Physiological signals are transmitted wirelessly via IEEE 802.15.4 communication technology and shown in a graphic user interface (GUI) in real-time. The proposed system implemented a time division multiple access (TDMA) protocol for the purpose of power saving and high bandwidth utilization. Moreover, a low-overhead time synchronization method was proposed, which can dynamically adjust the transmitter clock without extra synchronization messages and oscillator frequency measurement in advance. The proposed system was proved to work successfully on multiple freely moving rats and achieved more than 99% received data integrity during 24 hours recording.
論文目次 CHAPTER 1. INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Thesis Organization 5
CHAPTER 2. RELATED WORK 6
2.1 Health Monitoring Devices 6
2.2 Time Synchronization 7
2.2.1 Reference Broadcast Synchronization 8
2.2.2 Timing-sync Protocol for Sensor Networks 8
2.2.3 Flooding Time Synchronization Protocol 9
CHAPTER 3. DESIGN AND IMPLEMENTATION 10
3.1 Overview 10
3.2 Hardware Architecture 11
3.2.1 Microcontroller Module 11
3.2.2 Sensor Module 12
3.3 Software Architecture 13
3.3.1 MAC Protocol 13
3.3.2 Packet Format 14
3.3.3 Packet Retransmission 15
3.3.4 Time Synchronization 19
3.3.5 User Interface 23
CHAPTER 4. EXPERIMENT AND EVALUATION 26
4.1 Retransmission Policy 26
4.2 Real-World Experiment 26
4.2.1 Experimental Setup 26
4.2.2 Overall Experimental Results 27
4.2.3 Statistic of Packets 28
4.2.4 Effect of Moving Subjects on PRR 30
4.2.5 Throughput 31
4.3 Existing MAC Protocol Comparison 32
4.4 Time Synchronization 33
4.5 Power Consumption 36
4.6 Signal Demonstration 37
CHAPTER 5. DISCUSSION 40
CHAPTER 6. CONCLUSION AND FUTURE WORK 42
REFERENCES 44
參考文獻 [1] B. E. Swartz and E. S. Goldensohn, "Timeline of the history of EEG and associated fields," Electroencephalography and Clinical Neurophysiology, vol. 106, no. 2, pp. 173-6, 1998.
[2] Epilepsy Foundation, [Online] Available: http://www.epilepsyfoundation.org/.
[3] M. Modarreszadeh and R. N. Schmidt, "Wireless, 32-channel, EEG and epilepsy monitoring system," in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1157-1160, 1997.
[4] R. L. Williams, I. Karacan, and C. J. Hursch, Electroencephalography (EEG) of human sleep: clinical applications, Wiley New York, 1974.
[5] T. M. E. Nijsen, J. B. A. M. Arends, P. A. M. Griep, and P. J. M. Cluitmans, "The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy," Epilepsy & Behavior, vol. 7, no. 1, pp. 74-84, 2005.
[6] A. K. Whitchurch, B. Ashok, R. Kumaar, K. Saurkesi, and V. K. Varadan, "Wireless system for long-term EEG monitoring of absence epilepsy," in Proc. SPIE, pp. 343-349, Melbourne, Australia, 2002.
[7] P. Jallon, S. Bonnet, M. Antonakios, and R. Guillemaud, "Detection system of motor epileptic seizures through motion analysis with 3D accelerometers," in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2466-2469, 2009.
[8] "ZigBee Wireless Sensor Applications for Health, Wellness and Fitness", in ZigBee Alliance, [Online] Available: www.zigbee.org.
[9] I. Obeid, M. A. L. Nicolelis, and P. D. Wolf, "A multichannel telemetry system for single unit neural recordings," Journal of Neuroscience Methods, vol. 133, no. 1-2, pp. 33-38, 2004.
[10] A. Milenkovic, C. Otto, and E. Jovanov, "Wireless sensor networks for personal health monitoring: Issues and an implementation," Computer Communications, vol. 29, no. 13-14, pp. 2521-2533, 2006.
[11] S. Farshchi, A. Pesterev, P. Nuyujukian, I. Mody, and J. Judy, "Bi-Fi: An Embedded Sensor/System Architecture for Remote Biological Monitoring," IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 6, pp. 611-618, 2007.
[12] M. Yuce, P. Ng, and J. Khan, "Monitoring of physiological parameters from multiple patients using wireless sensor network," Journal of Medical Systems, vol. 32, no. 5, pp. 433-441, 2008.
[13] H. Chen, W. Wu, and J. Lee, "A WBAN-based Real-time Electroencephalogram Monitoring System: Design and Implementation," Journal of Medical Systems, vol. 34, no. 3, pp. 303-311, 2009.
[14] R. Chávez-Santiago, A. Khaleghi, I. Balasingham, and T. A. Ramstad, "Architecture of an ultra wideband wireless body area network for medical applications," in Proc. 2nd IEEE International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 1-6, Bratislava, 2009.
[15] X. Fu, W. Chen, S. Ye, Y. Tu, Y. Tang, D. Li, H. Chen, and K. Jiang, "A Wireless Implantable Sensor Network System for In Vivo Monitoring of Physiological Signals," IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 4, pp. 577 - 584, 2011.
[16] P. Sungmee and S. Jayaraman, "Enhancing the quality of life through wearable technology," IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 3, pp. 41-48, 2003.
[17] A. Fort, C. Desset, J. Ryckaert, P. De Doncker, L. Van Biesen, and P. Wambacq, "Characterization of the ultra wideband body area propagation channel," in IEEE International Conference on Ultra-Wideband, pp. 22-27, 2005.
[18] B. Latre, B. Braem, I. Moerman, C. Blondia, and P. Demeester, "A survey on wireless body area networks," Wireless Networks, vol. 17, no. 1, pp. 1-18, 2011.
[19] M. A. Yigitel, O. D. Incel, and C. Ersoy, "QoS-aware MAC protocols for wireless sensor networks: A survey," Computer Networks, vol. 55, no. 8, pp. 1982-2004, 2011.
[20] F. Gilliam, R. Kuzniecky, and E. Faught, "Ambulatory EEG monitoring," Journal of clinical neurophysiology, vol. 16, no. 2, pp. 111-115, 1999.
[21] V. Cionca, T. Newe, and V. Dadarlat, "TDMA Protocol Requirements for Wireless Sensor Networks," in Second International Conference on Sensor Technologies and Applications (SENSORCOMM '08), pp. 30-35, 2008.
[22] S. Ullah, D. Kwak, C. Lee, H. Lee, and K. S. Kwak, "Numerical Analysis of CSMA/CA for Pattern-Based WBAN System," in Proceedings of Biomedical Engineering and Informatics, pp. 1-3, Tianjin, China, 2009.
[23] G. Lu, B. Krishnamachari, and C. Raghavendra, "Performance evaluation of the IEEE 802.15. 4 MAC for low-rate low-power wireless networks," in 2004 IEEE International Conference on Performance, Computing, and Communications, pp. 701-706, 2004.
[24] S. Ullah, B. Shen, S. M. R. Islam, P. Khan, S. Saleem, and K. S. Kwak, "A Study of MAC Protocols for WBANs," Sensors, vol. 10, no. 1, pp. 128-145, 2011.
[25] W. Yik-Chung, Q. Chaudhari, and E. Serpedin, "Clock Synchronization of Wireless Sensor Networks," IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 124-138, 2011.
[26] P. A. Floor, I. Balasingham, T. A. Ramstad, E. Meurville, and M. Peisino, "Compression Schemes for In-body and On-body UWB Sensor Networks," in 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 1-5, Rome, 2010.
[27] N. Timmons and W. Scanlon, "Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking," in First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, pp. 16-24, 2004.
[28] S. Tseng, C. Tsai, Y. Lai, and W. Fang, "A wireless biomedical sensor network using IEEE 802.15.4," in IEEE/NIH Life Science Systems and Applications Workshop, pp. 183-186, Bethesda, 2009.
[29] H. Li and J. Tan, "An ultra-low-power medium access control protocol for body sensor network," in 27th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 2451-2454, Shanghai, 2005.
[30] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov, "System architecture of a wireless body area sensor network for ubiquitous health monitoring," Journal of Mobile Multimedia, vol. 1, no. 4, pp. 307-326, 2006.
[31] J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile, "IEEE 802.15.4: a developing standard for low-power low-cost wireless personal area networks," IEEE Network, vol. 15, no. 5, pp. 12-19, 2001.
[32] IEEE 802.15.4 MAC, [Online] Available: http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4675&category_id=163&family_id=676&subfamily_id=2124.
[33] News: Freescale products achieve ZigBee® Health Care Certification, [Online] Available: http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=BEEKIT_WIRELESS_CONNECTIVITY_TOOLKIT&parentCode=MC1322x&fpsp=1.
[34] IEEE802.15.4 Medium Access control (MAC) software stack, [Online] Available: http://focus.ti.com/docs/toolsw/folders/print/timac.html.
[35] W. Ye, J. Heidemann, and D. Estrin, "Medium access control with coordinated adaptive sleeping for wireless sensor networks," IEEE/ACM Transactions on Networking, vol. 12, no. 3, pp. 493-506, 2004.
[36] H. Kopetz and W. Ochsenreiter, "Clock synchronization in distributed real-time systems," IEEE Transactions on Computers, vol. 100, no. 8, pp. 933-940, 2009.
[37] S. Ganeriwal, R. Kumar, and M. Srivastava, "Timing-sync protocol for sensor networks," in Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 138-149, 2003.
[38] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, "The flooding time synchronization protocol," in Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 39-49, 2004.
[39] J. Elson, L. Girod, and D. Estrin, "Fine-grained network time synchronization using reference broadcasts," ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 147-163, 2002.
[40] A True System-on-Chip solution for 2.4 GHz IEEE 802.15.4 / ZigBee (TM) (Rev. F), [Online] Available: http://www.ti.com/lit/gpn/cc2430.
[41] J. Zhao and R. Govindan, "Understanding packet delivery performance in dense wireless sensor networks," in Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 1-3, Los Angeles, California, USA, 2003.
[42] D. Cox, E. Jovanov, and A. Milenkovic, "Time synchronization for ZigBee networks," in Proceedings of the 37th IEEE Southeastern Symposium on System Theory (SSST'05), pp. 135-138, Tuskegee, 2005.
[43] D. S. Gangwar, "Traffic and performance management for biomedical sensor network," International Journal of Computer Science and Communication, vol. 2, no. 1, pp. 183-189, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw