系統識別號 U0026-2208201112273800 論文名稱(中文) 利用有限差分法模擬海水面上升海水入侵影響範圍之研究 論文名稱(英文) A finite-difference modeling of the impact of seawater level rising on salt water intrusion in coastal aquifers 校院名稱 成功大學 系所名稱(中) 水利及海洋工程學系碩博士班 系所名稱(英) Department of Hydraulics & Ocean Engineering 學年度 99 學期 2 出版年 100 研究生(中文) 陳柏嘉 研究生(英文) Po-Chia Chen 學號 n86981202 學位類別 碩士 語文別 中文 論文頁數 55頁 口試委員 口試委員-譚義績口試委員-蔡智恆口試委員-蕭士俊口試委員-陳主惠指導教授-羅偉誠 中文關鍵字 海水入侵  有限差分法  含水層 英文關鍵字 Seawater intrusion  finite difference method  aquifer 學科別分類 中文摘要 近年來，全球暖化影響未來面臨海水上升之危機已被高度關注，這是一個長期的議題。暖化帶來的溫度上升之結果導致海水溫度增加，透過熱擴散作用，使得冰山、冰帽及冰層融化。由聯合國政府間氣候變遷小組第二工作組第四評估報告指出，未來氣候變遷將會有諸多影響，尤其，沿岸地區更加嚴重。對沿岸地區的影響包含：沿岸侵蝕加劇、改變地面水及地下水水質。 本研究運用時間獨立之有限差分法模擬沿海含水層海水入侵之結果，並以二維尺度來呈現。本模式探討沿海地區海水面上升對不同水文地質條件海水入侵影響之情形。本模式將與前人研究以傳統的Henry problem結果做驗證。Henry problem呈現一受水層海水入侵過程中鹽水的擴散與淡水之間作用力平衡之穩態解。淡水定流量流入假想的內陸邊界並且在假想的沿海邊界流出；而海水由沿海邊界擴散且與流出的淡水混合。Henry problem為理想的海水入侵模式，本模式將依據Henry problem以模擬因海水面上升導致海水入侵之範圍。因此，本研究將做為氣候變遷所導致之海水面上升海水入侵範圍的預測。 英文摘要 Sea level rise has currently been suggested to be due significantly to global warming, which increases sea level over the coming century and longer periods. Increasing temperatures result in sea level rise both by the thermal expansion of water and by the addition of water to the oceans from the melting of mountain glaciers, ice caps, and ice sheets. Based on the IPCC (Intergovernmental Panel on Climate Change), FAR (Fourth Assessment Report), and WG (Working Group) II reports, it is noted that current and future climate changes and sea level rise would be expected to have a number of impacts, particularly on coastal systems. Such impacts may include increased coastal erosion, as well as changes in surface water quality and groundwater characteristics. This study presents a two-dimensional time-independent finite difference model to simulate the intrusion of seawater in coastal aquifers. This model considers the effect of sea level rise with different hydrogeological conditions on coastal areas. The numerical technique is validated by the result of the traditional Henry problem. Henry’s problem addresses the steady-state solution of a diffused saltwater wedge within a confined aquifer balanced against a flowing freshwater field. Fresh water enters the confined aquifer at a constant rate from a hypothetical inland boundary and discharges into a hypothetical coastal boundary. Salt water from the coastal boundary diffuses and mixes with the discharging fresh water. Idealized saltwater intrusion, known as the Henry problem, was extended to simulate seawater intrusion on coastal areas accounting for effects of sea level rise. Therefore, the impacts of sea level rise caused by climate changes on seawater intrusion will be investigated in this study. 論文目次 目錄 中文摘要 I Abstract II 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1.1研究動機與目的 1 1.2前人研究 2 1.3本文架構 4 1.4 研究步驟 5 第二章 理論 6 2.1 基本理論 6 2.1.1 Ghyben-Herzberg 理論 6 2.1.2 Hubbert 理論 7 2.2 海水入侵相關方程式 8 2.2.1 達西定律 9 2.2.2 濃度密度關係方程式 10 2.2.3 地下水流動方程式 10 2.2.4 溶質傳輸方程式 12 第三章 數值方法 16 3.1 有限差分法 16 3.2 迭代法─超鬆弛法(S.O.R) 17 3.3 網格建立 18 3.4 模式控制方程式 18 3.4.1 控制方程式參數無因次化 19 3.4.2 離散化(discretization)控制方程式 20 3.4.3 離散化結果 21 3.5 邊界條件 23 3.6 初始條件 24 3.6 數值流程圖 25 第四章 數值結果 26 4.1 模式驗證 26 4.1.1 修正之Henry Problem 26 4.1.2 本模式參數設定 27 4.1.3 驗證結果 27 4.2 數值之參數模擬設定 29 4.2.1 全球暖化之因素 29 4.2.2 水力傳導係數對海水入侵之影響(Case1及Case2) 30 4.2.3 延散係數對海水入侵之影響(Case1、Case2、Case3及Case4) 35 4.2.4 比儲水係數對海水入侵之影響(Case1、Case2、Case3及Case4) 43 第五章 結論與建議 51 5.1 結論 51 5.2建議 52 參考文獻 53 參考文獻 1. Abdalla, O. A. E., M. Ali, K. Al-Higgi, H. Al-Zidi, I. El-Hussain, and S. Al-Hinai, 2010, Rate of seawater intrusion estimated by geophysical methods in an arid area: Al Khabourah, Oman: Hydrogeology Journal, v. 18, p. 1437-1445. 2. Amadi, A. N., P. I. Olasehinde, and J. Yisa, 2010, Characterization of groundwater chemistry in the coastal plain-sand aquifer of Owerri using factor analysis: International Journal of the Physical Sciences, v. 5, p. 1306-1314. 3. Fan, Y., and R. Kahawita, 1994, A numerical study of variable-density flow and mixing in porous-media: Water Resources Research, v. 30, p. 2707-2716. 4. Goswami, R. R., and T. P. Clement, 2007, Laboratory-scale investigation of saltwater intrusion dynamics: Water Resources Research, v. 43. 5. Gossel, W., A. Sefelnasr, and P. Wycisk, 2010, Modelling of paleo-saltwater intrusion in the northern part of the Nubian Aquifer System, Northeast Africa: Hydrogeology Journal, v. 18, p. 1447-1463. 6. Kallioras, A., F. Pliakas, and I. Diamantis, 2010a, Simulation of Groundwater Flow in a Sedimentary Aquifer System Subjected to Overexploitation: Water Air and Soil Pollution, v. 211, p. 177-201. 7. Kaplan, D., R. Munoz-Carpena, Y. Wan, M. Hedgepeth, F. Zheng, R. Roberts, and R. Rossmanith, 2010, Linking River, Floodplain, and Vadose Zone Hydrology to Improve Restoration of a Coastal River Affected by Saltwater Intrusion: Journal of Environmental Quality, v. 39, p. 1570-1584. 8. Langevin, C. D., and W. Guo, 2006, MODFLOW/MT3DMS-Based Simulation of Variable-Density Ground Water Flow and Transport: Ground Water, v. 44, p. 339-351. 9. Lian, X. M., and H. X. Rui, 2010, A discontinuous Galerkin method combined with mixed finite element for seawater intrusion problem: Journal of Systems Science & Complexity, v. 23, p. 830-845. 10. Perera, E. D. P., K. Jinno, A. Tsutsumi, and Y. Hiroshiro, 2008, Numerical study of salinity variation in a coastal aquifer: a case study of the Motooka region in western Japan: Stochastic Environmental Research and Risk Assessment, v. 23, p. 957-965. 11. Qahman, K., and A. Larabi, 2006, Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine): Hydrogeology Journal, v. 14, p. 713-728. 12. Ragab, R., and J. Bromley, 2010, IHMS-Integrated Hydrological Modelling System. Part 1. Hydrological processes and general structure: Hydrological Processes, v. 24, p. 2663-2680. 13. Rona, P. A., M. D. Hannington, C. V. Raman, G. Thompson, M. K. Tivey, S. E. Humphris, C. Lalou, and S. Petersen, 1993, Active and relict sea-floor hydrothermal mineralization at the tag hydrothermal field, mid-atlantic ridge: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 88, p. 1989-2017. 14. Smith, A. J., and J. V. Turner, 2001, Density-dependent surface water-groundwater interaction and nutrient discharge in the Swan-Canning Estuary: Hydrological Processes, v. 15, p. 2595-2616. 15. Simmons, C. T., T. R. Fenstemaker, and J. M. Sharp, 2001, Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges: Journal of Contaminant Hydrology, v. 52, p. 245-275. 16. Stute, M., C. Sonntag, J. Deak, and P. Schlosser, 1992, Helium in deep circulating groundwater in the great hungarian plain-flow dynamics and crustal and mantle helium fluxes: Geochimica Et Cosmochimica Acta, v. 56, p. 2051-2067. 17. Simpson, M. J., 2004, Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models: Water Resources Research, v. 40. 18. Taniguchi, M., W. C. Burnett, J. E. Cable, and J. V. Turner, 2002, Investigation of submarine groundwater discharge: Hydrological Processes, v. 16, p. 2115-2129. 19. Yidana, S. M., and A. Yidana, 2010, An assessment of the origin and variation of groundwater salinity in southeastern Ghana: Environmental Earth Sciences, v. 61, p. 1259-1273. 20. Yuan, Y., D. Liang, and H. Rui, 2009, The numerical simulation and analysis of three-dimensional seawater intrusion and protection projects in porous media: Science in China Series G: Physics, Mechanics and Astronomy, v. 52, p. 92-107. 21. Zou, H., and H. Li, 2010, Numerical Simulation of Seawater Intrusion from Estuary into River Using a Coupled Modeling System: Journal of Ocean University of China, v. 9, p. 219-228. 論文全文使用權限 同意授權校內瀏覽/列印電子全文服務，於2011-08-26起公開。同意授權校外瀏覽/列印電子全文服務，於2012-08-26起公開。

 如您有疑問，請聯絡圖書館 聯絡電話：(06)2757575#65773 聯絡E-mail：etds@email.ncku.edu.tw