進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2207202017170200
論文名稱(中文) 以表面接枝之磁性奈米團簇修飾金電極用於電化學阻抗式感測血清白蛋白
論文名稱(英文) Fabrication of Au electrode with surface grafted magnetic nanoclusters for the electrochemical impedance detection of serum albumin
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 陳瑩瑩
研究生(英文) Ying-Ying Chen
電子信箱 a0979112787@gmail.com
學號 N36074306
學位類別 碩士
語文別 中文
論文頁數 66頁
口試委員 指導教授-許梅娟
口試委員-陳雲
口試委員-劉瑞祥
口試委員-李建良
口試委員-詹正雄
中文關鍵字 氧化鐵奈米粒子  奈米團簇  修飾電極  電化學阻抗式  人體血清白蛋白 
英文關鍵字 magnetic nanoclusters  human serum albumin  electrochemical impedance spectroscopy 
學科別分類
中文摘要 本研究首先以油相熱烈解法合成疏水性的氧化鐵奈米粒子 (MNP),經由CTAB改質後,可將其轉換為氧化鐵奈米團簇 (MNC)。以AEAPTES修飾後,可成功將其轉換為親水性的奈米粒子 (MNC@AE)。在接枝sulfo-SMCC後,成功賦予其表面馬來醯亞胺基,使其成為可吸附白蛋白的功能性奈米粒子 (MNC@SMCC)。將實驗所得產物進行XRD分析,可知其核心為四氧化三鐵。MNC系列之TEM影像為多顆MNP聚集而成的奈米團簇,具有微胞結構,其由DLS分析所得粒徑因水合作用而與TEM粒徑差距較大。由HRTEM分析可觀察到粒子內部的原子排列,搭載電子選區繞射可得到多個四氧化三鐵之晶面,可與XRD分析相佐證。由FT-IR及XPS分析可觀察到改質及接枝後特定特徵峰的出現及所含元素種類的變化,皆為改質及接枝成功提供了證據。由界面電位分析可知其表面電性隨修飾層增加之改變,原為正電性的MNC經多層修飾後電位逐漸趨於中性。由SQUID分析可知,所合成的氧化鐵奈米團簇在300 K下具有高飽和磁化量及低殘餘磁化量,均為超順磁性。由分光光度計之沉降曲線可知,本實驗之最終產物MNC@SMCC具有良好的親水性及穩定性,可應用於後續之生醫感測。
將MNC@SMCC修飾於金電極可用於白蛋白感測。由循環伏安法及Nyquist分析可知其具有高電化學活性面積及導電性。在生醫感測方面,結合電化學阻抗式分析方法,便可計算阻抗變化率以校正定量白蛋白濃度。修飾電極所能感測白蛋白之線性濃度範圍為1~13 g/dL,此範圍亦涵蓋了正常的人體血清白蛋白濃度。由干擾物測試結果可發現修飾電極對白蛋白具有專一性,即具有高選擇性。其亦具有較佳的穩定性,在室溫下保存30天仍能維持不錯的再現性。以成大醫院林韋伶教授所提供之血清檢體進行白蛋白感測,並計算修飾電極實測值與醫院提供的檢測值,以比較兩者間之吻合度,實測60組的結果顯示修飾電極與醫院檢測值的吻合度為81.8%。此結果顯示本研究已建立可感測血清白蛋白的修飾電極。

英文摘要 Magnetic iron oxide nanomaterials have been widely investigated because of their superparamagnetic property upon being subjected to an external magnetic field. Thermal decomposition was applied to prepare uniformly distributed iron oxide nanoparticles (MNP). Then, iron oxide magnetic nanoclusters (MNC) were then prepared by adding CTAB (cetyltrimethylammonium bromide). Meanwhile, AEAPTES ((3-(2-aminoethyl amino)propyl)triethoxysilane) was also used to tune the hydrophobic surfaces of the nanoclusters into hydrophilic. Afterwards, AEAPTES modified nanoclusters (MNC@ AE) were further conjugated with sulfo-SMCC (sulfo-N-succinimidyl 4-(N-maleimido methyl)cyclohexane-1-carboxylate)). Via which, the as-prepared SMCC conjugated MNCs (MNC@SMCC) were able to capture human serum albumin (HSA). By XRD spectrum, we can know that its core is Fe3O4. We can also find the diameter of MNC series calculated by DLS is much larger than the one calculated by TEM because of hydration reaction. The appearance of the typical peaks and change of chemical elements can be checked by FT-IR and XPS. We can also see the surface charge of MNC series change from positive to neutral by zeta-potential. From M-H curve, we can know all of the particles are superparamagnetic. By UV-vis, we can find the final product MNC@ SMCC has good dispersity in water, which is suitable to be as the material of biomedical detection. The binding as well as detection of different HSA concentrations was performed by electrochemical impedance spectroscopy. The calibration curve of impedance change ratio against albumin concentration shows excellent linearity. Detection of HSA concentration thus becomes feasible by the surface modified MNC@ SMCC coated Au electrode. In this work, we also cooperate with the hospital to test human serum samples and find the modified electrode has the potential for further clinical applications.

論文目次 摘要 I
EXTENDED ABSTRACT II
誌謝 VI
第一章 緒論 1
第二章 文獻回顧 2
2-1氧化鐵奈米粒子的種類 2
2-2 磁性分類 3
2-3氧化鐵奈米粒子的合成方法 4
2-3-1共沉澱法 4
2-3-2 熱裂解法 4
2-3-3溶膠-凝膠法 5
2-3-4微乳化法 6
2-4 氧化鐵奈米粒子的改質 6
2-4-1 氧化鐵奈米粒子的化學改質 6
2-4-1-1 有機化合物官能化氧化鐵奈米粒子 6
2-4-1-2 無機化合物官能化氧化鐵奈米粒子 7
2-4-2 氧化鐵奈米粒子的物理改質 7
2-4-2-1 金屬混摻型氧化鐵奈米粒子複合物 7
2-4-2-2 陶瓷混摻型氧化鐵奈米粒子複合物 8
2-5 氧化鐵奈米粒子的應用 8
2-5-1 藥物靶向輸送 8
2-5-2 核磁共振顯影劑 8
2-5-3 廢水處裡之吸附劑 9
2-5-4 生醫感測 10
2-6 人體血清白蛋白 (HSA) 10
2-7 硫醇-馬來醯亞胺反應 11
2-8 三電極系統 11
2-9 電化學分析方法 12
2-9-1 伏安法 12
2-9-2 計時電流法 (Chronoamperometry) 13
2-9-3 開路電位法 (Open-circuit potential) 14
2-9-4 電化學阻抗頻譜法 (Electrochemical impedance spectroscopy, EIS) 14
2-10 前人實驗概述 15
2-11 研究動機與設計理念 16
第三章 實驗方法與材料 17
3-1合成步驟 17
3-1-1以油相法製備氧化鐵奈米粒子 (MNP) 17
3-1-2 以CTAB修飾氧化鐵磁性奈米粒子 (MNC, magnetic nanocluster) 17
3-1-3 以AEAPTES改質氧化鐵磁性奈米粒子 (MNC@AE) 18
3-1-4 以sulfo-SMCC接枝氧化鐵磁性奈米粒子 (MNC@SMCC) 18
3-1-5 裸金電極的製備及修飾 19
3-1-6以電化學交流阻抗分析法 (EIS) 進行HSA感測 19
3-2 實驗藥品 20
3-3 實驗設備 21
第四章 實驗結果與討論 22
4-1 以油相法製備氧化鐵奈米粒子之製程改善 22
4-1-1 再現性探討 22
4-1-2 分離產物方法之影響 22
4-1-3 改變反應時間之影響 23
4-2 以CTAB與AEAPTES修飾之氧化鐵奈米團簇 (MNC@AE) 24
4-2-1 以CTAB改質氧化鐵奈米粒子之參數優化 24
4-2-2 以AEAPTES修飾之氧化鐵奈米團簇之參數優化 26
4-3 以sulfo-SMCC接枝氧化鐵奈米團簇 (MNC@SMCC) 27
4-4 合成鑑定與分析 27
4-4-1 X光繞射光譜 (XRD) 27
4-4-2 穿透式電子顯微鏡分析 (TEM) 29
4-4-3 高解析分析電子顯微鏡與選區電子繞射分析 (HR-TEM & SAED) 30
4-4-4 動態光散射式粒徑分析與界面電位分析 (DLS & Zeta potential) 31
4-4-5 傅立葉轉換紅外線光譜與化學分析電子能譜儀 (FT-IR & XPS) 33
4-4-6 超導量子干涉震動磁量分析 (SQUID VSM) 36
4-4-7 紫外光/可見光分光光度計 (UV/Vis) 38
4-5 電化學生醫感測白蛋白 39
4-5-1 電極表面性質探討 39
4-5-1-1 CV與Nyquist分析 39
4-5-1-2 原子力顯微鏡分析 (AFM) 40
4-5-2 感測條件之最佳化 41
4-5-2-1 交流頻率最佳化之探討 41
4-5-2-2 感測之背景溶液pH探討 42
4-5-3 感測白蛋白之再現性與可行性探討 44
4-5-3-1 感測再現性探討 44
4-5-3-2 感測可行性探討 44
4-5-4 干擾物測試 47
4-5-4-1 單一成分干擾物測試 48
4-5-4-2 雙成分干擾物測試 49
4-5-5 真實樣本測試 50
4-5-5-1 血清檢量線之建立 50
4-5-5-2 感測血清檢體白蛋白 52
4-5-6 電極穩定性測試 54
4-6 本研究與相關文獻比較 55
第五章 結論 57
參考文獻 58
附錄 62
1-1 檢體量測結果之阻抗隨時間變化圖譜 62

參考文獻 1. L Gloag, M Mehdipour, DF Chen, RD Tilley, JJ Gooding. Advances in the application of magnetic nanoparticles for sensing. Advanced Materials 31, 1904385-1904410, 2019.
2. CP Guntlin, ST Ochsenbein, M Wörle, R Erni, KV Kravchyk, MV Kovalenko. Popcorn-shaped FexO (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties. Chemistry of Materials 30, 1249-1256, 2018.
3. F Bødker, MF Hansen, CB Koch, K Lefmann, S Mørup. Magnetic properties of hematite nanoparticles. Physical Review B 61, 6826-6838, 2000.
4. RL Rebodos, PJ Vikesland. Effects of oxidation on the magnetization of nanoparticulate magnetite. Langmuir 26, 16745-16753, 2010.
5. BA Maher, IAM Ahmed, V Karloukovski, DA MacLaren, PG Foulds, D Allsop, DMA Mann, RT Jardón, LC Garciduenas. Magnetite pollution nanoparticles in the human brain. Proceedings of The National Academy of Sciences of The United States of America 113, 10797-10801, 2016.
6. XL Liu, Y Yang, JP Wu, YF Zhang, HM Fan, J Ding. Novel magnetic vortex nanorings/nanodiscs: synthesis and theranostic applications. Chinese Physics B 24, 127505-127515, 2015.
7. LM Lacroix, D Ho, SH Sun. Magnetic nanoparticles as both imaging probes and therapeutic agents. Catalysis Letters 10, 1184-1197, 2010.
8. JH Lee, JT Jang, JS Choi, SH Moon, SH Noh, JW Kim, JG Kim, IS Kim, KI Park, JW Cheon. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology 6, 418-422, 2011.
9. R Massart. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics 17(2), 1247-1248, 1981.
10. SK Suh, K Yuet, DK Hwang, KW Bong, PS Doyle, TA Hatton. Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. Journal of the American Chemical Society 134, 7337-7343, 2012.
11. J Gautier, E Allard-Vannier, K Hervé-Aubert, M Soucé, I Chourpa. Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24, 432002-432016, 2013.
12. ZJ Zhou, XL Zhu, DJ Wu, QL Chen, DT Huang, CJ Sun, JY Xin, KY Ni, JH Gao. Anisotropic shaped iron oxide nanostructures: controlled synthesis and proton relaxation shortening effects. Chemistry of Materials 27, 3505-3515, 2015.
13. DD Shao, KK Xu, XJ Song, JH Hu, WL Yang, CC Wang. Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. Journal of Colloid and Interface Science 336, 526-532, 2009.
14. D Shao, A Xia, J Hu, C Wang, W Yu. Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 322, 61-65, 2008.
15. AK Gupta, M Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995-4021, 2005.
16. A Tomitaka, JI Jo, I Aoki, Y Tabata. Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflammation and Regeneration 34(1), 45-55, 2014.
17. MZ Kassaee, H Masrouri, F Movahedi. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Applied Catalysis A: General 395, 28–33, 2011.
18. U Kurtan, A Baykal, H Sözeri. Synthesis and characterization of sulfamic-acid functionalized magnetic Fe3O4 nanoparticles coated by poly(amidoamine) dendrimer. Journal of Inorganic and Organometallic Polymers and Materials 24, 948-953, 2014.
19. H Naeimi, ZS Nazifi. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives. Journal of Nanoparticle Research 15, 20–26, 2013.
20. B Shen, WT Zhai, MM Tao, JQ Ling, WG Zheng. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. Applied Materials & Interfaces 5, 11383–11391, 2005.
21. H Yu, M Chen, PM Rice, SX Wang, RL White, SH Sun. Dumbbell-like bifunctional Au−Fe3O4 nanoparticles. Nano Letters 5, 379–382, 2005.
22. YH Wei, R Klajn, AO Pinchuk, BA Grzybowski. Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 4, 1635–1639, 2008.
23. YX Li, M Zhang, M Guo, XD Wang. Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Journal of Physics 28, 423–427, 2009.
24. SW Phang, M Tadokoro, J Watanabe, N Kuramoto. Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polymers Advanced Technologies 20, 550-557, 2009.
25. D Shao, J Li, X Zheng, Y Pan, Z Wang, M Zhang, QX Chen, WF Dong, L Chen. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials 100, 118-133, 2016.
26. JS Choi, JH Lee, TH Shin, HT Song, EY Kim, J Cheon. Self-confirming “And” logic nanoparticles for fault-free MRI. Journal of the American Chemical Society 132, 11015-11017, 2010.
27. TH Shin, JS Choi, S Yun, IS Kim, HT Song, Y Kim. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 8, 3393-3401, 2014.
28. P Miao, YG Tang, L Wang. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Applied Materials & Interfaces 9, 3940-3947, 2017.
29. EPA. Ambient water quality criteria for silver; Environmental Protection Agency, Office of Water: Washington, DC, 1980; EPA 440/5-80-071.
30. EPA. Ambient water quality criteria for mercury; U.S. Environmental Protection Agency, Office of Water: Washington, DC, 1985; EPA 440/5-94-026.
31. M Baghayeri, H Veisi, M Ghanei-Motlagh. Amperometric glucose biosensor based on immobilization of glucoseoxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sensors and Actuators B: Chemical 249, 321-330, 2017.
32. V Arroyo, R Garcia-Martinez, X Salvatella. Human serum albumin, systemic inflammation, and cirrhosis. Journal of Hepatology 61, 396−407, 2014.
33. MD Litchford. The advanced practitioner's guide to nutrition & wounds. CASE Software 2009.
34. BH Northrop, SH Frayne, U Choudhary. Thiol-maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity. Polymer Chemistry 6, 3415−3430, 2015.
35. AD Baldwin, KL Kiick. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjugate Chemistry 22, 1946−1953, 2011.
36. LS Lu, LS Liang, KS Teh, YX Xie, ZP Wan, Y Tang. The electrochemical behavior of carbon fiber microelectrodes modified with carbon nanotubes using a two-step electroless plating/chemical vapor deposition process. Sensors 17, 725−729, 2017.
37. D Grieshaber, R MacKenzie, J Vörös, E Reimhult. Electrochemical biosensors - sensor principles and architectures. Sensors 8, 1400−1458, 2008.
38. HM Jafari, K Abdelhalim, L Soleymani, EH Sargent, SO Kelley, R Genov. Nanostructured CMOS wireless ultra-wideband label-free PCR-free DNA analysis soc. Journal of Solid-State Circuits 49, 1223−1241, 2014.
39. Á Molina, E Laborda, EI Rogers, F Martínez-Ortiz, C Serna, JG Limon-Petersen, NV Rees, RG Compton. Theoretical and experimental study of differential pulse voltammetry at spherical electrodes: measuring diffusion coefficients and formal potentials. Journal of Electroanalytical Chemistry 634, 73−81, 2009.
40. V Mirceski, R Gulaboski. Recent Achievements in square-wave voltammetry. Macedonian Journal of Chemistry and Chemical Engineering 33, 1−12, 2014.
41. JH Christie, JA Turner, RA Osteryoung. Square wave voltammetry at the dropping mercury electrode: theory. Analytical Chemistry 49, 1899−1903, 1977.
42. WZ Tang, J Wu. Amperometric determination of organophosphorus pesticide by silver electrode using an acetylcholinesterase inhibition method. The Royal Society of Chemistry 6, 924−929, 2014.
43. DR Crow. Principles and applications of electrochemistry. Fourth Ed., CRC Press, 1994.
44. DV Ribeiro, JCC Abrantes. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Construction and Building Materials 111, 98−104, 2016.
45. E Barsoukov, JR Macdonald. Impedance spectroscopy: theory, experiment, and applications. Third Ed., John Wiley & Sons, Inc., USA, 2018.
46. 郭蘋萱。多功能性超順磁氧化鐵奈米粒子的製備、鑑定與生醫應用。國立成功大
學化工系碩士學位論文,2016。
47. 陳筑雯。製備超順磁氧化鐵奈米粒應用於人類血清白蛋白之免疫專一性結合與檢測。國立成功大學化工系碩士學位論文,2017。
48. 黃宜茵。以不同的表面修飾氧化鐵奈米粒子用於偵測人類血清白蛋白。國立成功大學化工系碩士學位論文,2018。
49. RJ Yang, CC Tseng, WJ Ju, HL Wang, LM Fu. A rapid paper-based detection system for determination of human serum albumin concentration. Chemical Engineering Journal 352, 241−246, 2018.
50. S Sakamoto, T Komatsu, T Ueno, K Hanaoka, Y Urano. Fluorescence detection of serum albumin with a turnover-based sensor utilizing Kemp elimination reaction. Bioorganic & Medicinal Chemistry Letters 27, 3464−3467, 2017.
51. A Mathaweesansurn, N Maneerat, N Choengchan. A mobile phone-based analyzer for quantitative determination of urinary albumin using self-calibration approach. Sensors and Actuators B: Chemical 242, 476−483, 2017.
52. F Eertmans, V Bogaert, B Puype. Development and validation of a high-performance liquid chromatography (HPLC) method for the determination of human serum albumin (HSA) in medical devices. Analytical Methods 3, 1296−1302, 2011.
53. JF Xia, XY Cao, ZH Wang, M Yang, FF Zhang, B Lu, F Li, YH Li, YZ Xia. Molecularly imprinted electrochemical biosensor based on chitosan/ionic liquid-graphene composites modified electrode for determination of bovine serum albumin. Sensors and Actuators B 225, 305−311, 2016.
54. YH Chuang, YT Chang, KL Liu, HY Chang, TR Yew. Electrical impedimetric biosensors for liver function detection. Biosensors and Bioelectronics 28, 368–372, 2011.
55. AF Ogata, JM Edgar, S Majumdar, JS Briggs, SV Patterson, MX Tan. Virus-enabled biosensor for human serum albumin. Analytical chemistry 89, 1373−1381, 2017.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw