系統識別號 U0026-2207202007510000
論文名稱(中文) 稻田除草機器人之研製
論文名稱(英文) Design and Implementation of a Rice Field Weeding Robot
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 黃柏文
研究生(英文) Po-Wen Huang
學號 N96084484
學位類別 碩士
語文別 中文
論文頁數 105頁
口試委員 指導教授-周榮華
中文關鍵字 稻田  除草機器人  農業自動化 
英文關鍵字 Rice Field  Weeding Robot  Agricultural Automation 
中文摘要 稻田中使用除草劑,是目前大多數農民的做法,然而,近年來有機農業興起,民眾的環保意識提升下,開始有更多的農民不使用除草劑,不過除草問題依然是必須面對的課題,在炎熱的天氣加上泥濘狀況下之稻田中進行除草,對於農民而言是非常辛苦的事情甚至可能造成熱傷害,如能使用自動化技術處理此問題,將對於環境與農民有益。
英文摘要 Currently, many farmers use herbicides in rice fields. However, in recent years, with the rise of organic agriculture and the increase in public awareness of the environmental protection, more farmers have begun not to use herbicides. But weeding is still a big problem that must be faced. Weeding in rice fields under hot weather and muddy conditions is not an easy job for farmers and may even cause heat syndromes. If we can use automated technology to deal with this problem, it will be beneficial to the environment and farmers.
This research has developed a Rice Field Weeding Robot for weeding automation by 3D printing. It has been tested in the Packaging and System Integration Laboratory of the Department of Engineering Science, National Cheng Kung University, the Golden Coast of Tainan City and the author family’s rice field at Jinxing Village, Changhua County. The goal of the tests is to verify the smoothness of its function and overall operation. The main test items include: (1) Test the smoothness of the belt driving mechanism; (2) Test the result of ultrasonic sensor when turning; (3) Test the performance of image recognition with OpenCV; (4) Test the performance of the weeding mechanism and (5) Verification of the overall results of the robot's autonomous weeding. This research is based on the above test items.
The results show that the weeding rate is about 98% and demonstrate the feasibility of the developed robot. The performance can be improved by using stronger materials to replace the 3D printing material adopted in this study.
論文目次 摘要 I
Extended Abstract II
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
1-3研究課題描述與分析 2
1-4文獻回顧 6
1-5論文架構 35
第二章 背景技術介紹 36
2-1色彩空間轉換 36
2-2邊緣偵測 37
2-3霍夫轉換 39
2-4最小平方法 41
第三章 系統架構與軟硬體介紹 42
3-1系統架構 42
3-1-1幾何尺寸介紹 44
3-2硬體介紹 45
3-3軟體介紹 50
3-3-1機構設計:SolidWorks 50
3-3-2控制程式:Python 50
3-3-3通訊協定:Pyfirmata 50
3-3-4遠端操控:Xrdp 51
第四章 機構設計與自走控制 52
4-1機構設計 52
4-1-1前段機構 54
4-1-2中段機構 56
4-1-3後段機構 57
4-2自走控制 58
4-2-1牛耕田路徑規劃 59
4-2-2行走控制 60
第五章 實驗流程與結果討論 62
5-1實驗流程 62
5-2基本行進測試 66
5-3地形測試 68
5-4稻田環境測試 71
5-5整合測試 75
5-6分析與討論 84
第六章 結論與建議 98
6-1結論 98
6-2建議 99
參考文獻 101
參考文獻 [1]搓草示意圖,https://greenbox.tw/,查詢時間:2020.06.01 8:00
[2]插秧機示意圖,https://www.stam.com.tw/,查詢時間:2020.06.01 9:00
[3]H. Olsen, "Determination of row position in small-grain crops by analysis of video images", Computers and Electronics in Agriculture,1995,Volume 12, Issue 2, pp. 147-162
[4]J. Marchant and R. Brivot, " Real-Time Tracking of Plant Rows Using a Hough Transform", Real-Time Imaging,1995,Volume 1, Issue 5, pp. 363-371
[5]B. Thomas and H. Jakobsen, "Agricultural Robotic Platform with Four Wheel Steering for Weed Detection", Biosystems Engineering, 2004, 87(2), pp. 125-136.
[6]T. Watanabe, "A duck robot for weeding work on the paddy field", IEEE Conference on Robotics and Automation, 2004. TExCRA Technical Exhibition Based., Minato-ku, Tokyo, Japan, 2004, pp. 81-82
[7] V. Fontaine and T. Crowe, "Development of line-detection algorithm for local positioning in densely seeded crops", Canadian Biosyst. Eng,2006,Volume 48, pp. 7.19-7.29
[8]K. Dang, J. Katupitiya, R. Eaton and N. Kwok, "Modelling and control of the GreenWeeder for crop row tracking", 2009 International Conference on Advanced Robotics, Munich, 2009, pp. 1-6.
[9]M. Tilneac and V. Dolga, "Individual Plant Recognition Using the RGB Color Model", Proceedings of the Mediterranean Electrotechnical Conference - MELECON, 2010, pp. 1147-1152
[10]G. Kim, S. Kim, Y. Hong, K. Han and S. Lee, "A robot platform for unmanned weeding in a paddy field using sensor fusion", 2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, 2012, pp. 904-907
[11]C. Qin, Q. Du, L. Tian and X. Huang, "The control system design of automatic weeding robot based on visual navigation", 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, 2012, pp. 956-961
[12]K. Kameyama, Y. Umeda and Y. Hashimoto, "Simulation and experiment study for the navigation of the small autonomous weeding robot in paddy fields", The SICE Annual Conference 2013, Nagoya, Japan, 2013, pp. 1612-1617
[13]B. Yoon and S. Kim, "Design of paddy weeding robot", IEEE ISR 2013, Seoul, 2013, pp. 1-2.
[14]A. Maruyama and K. Naruse, "Development of small weeding robots for rice fields", 2014 IEEE/SICE International Symposium on System Integration, Tokyo, 2014, pp. 99-105
[15]A. Michaels, S. Haug and A. Albert, "Vision-based high-speed manipulation for robotic ultra-precise weed control", 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, 2015, pp. 5498-5505.
[16]K. Choi, S. Han, K. Park, K. Kim and S. Kim, "Vision based guidance line extraction for autonomous weed control robot in paddy field", 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, 2015, pp. 831-836
[17]K. Nakamura, M. Kimura, T. Anazawa, T. Takahashi and K. Naruse, "Investigation of weeding ability and plant damage for rice field weeding robots", 2016 IEEE/SICE International Symposium on System Integration (SII), Sapporo, 2016, pp. 899-905
[18]H. Nakazawa, K. Nakamura and K. Naruse, "Collision identification in weeding robot with acceleration standard deviation", 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, 2016, pp. 2026-2032
[19]O. Barrero, D. Rojas, C. Gonzalez and S. Perdomo, "Weed detection in rice fields using aerial images and neural networks", 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-4
[20]S. Masashi et al., " A Study for Development of Autonomous Paddy-weeding Robot System -An experimentation for autonomously workspace-cognition and counter-rotation turn", Proceedings of The Fourth International Conference on Electronics and Software Science (ICESS2018), Japan, 2018, ISBN: 978-1-941968-52-9
[21]W. Winterhalter, F. Fleckenstein, C. Dornhege and W. Burgard, "Crop Row Detection on Tiny Plants With the Pattern Hough Transform", in IEEE Robotics and Automation Letters, Volume 3, no. 4, pp. 3394-3401, Oct. 2018
[22]H. Sori, H. Inoue, H. Hatta and Y. Ando, "Effect for a Paddy Weeding Robot in Wet Rice Culture", Journal of Robotics and Mechatronics, Volume 30, pp. 198-205, Oct. 2018
[23]X. Wu, S. Aravecchia and C. Pradalier, "Design and Implementation of Computer Vision based In-Row Weeding System", 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 4218-4224
[24]N. Chebrolu, P. Lottes, T. Läbe and C. Stachniss, "Robot Localization Based on Aerial Images for Precision Agriculture Tasks in Crop Fields", 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 1787-1793
[25]S. Hussmann, F. Knoll, A. Meissner and T. Holtorf, "Development and evaluation of a low-cost delta robot system for weed control applications in organic farming", 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 2019, pp. 1-5
[26]W. Barbosa et al., "Design and Development of an Autonomous Mobile Robot for Inspection of Soy and Cotton Crops", 2019 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 2019, pp. 557-562
[27]S. Gokul, R. Dhiksith, S. Sundaresh and M. Gopinath, "Gesture Controlled Wireless Agricultural Weeding Robot", 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 2019, pp. 926-929
[28]M. Basso and E. Freitas, " A UAV Guidance System Using Crop Row Detection and Line Follower Algorithms ", Journal of Intelligent & Robotic Systems, Volume 97, 2020, pp. 605-621
[29]A. Khan, S. Aziz, M. Bashir and M. Khan, "IoT and Wireless Sensor Network based Autonomous Farming Robot", 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 2020, pp. 1-5,
[30]Y. Ma, W. Zhang and W. Qureshi, " Autonomous navigation for a wolfberry picking robot using visual cues and fuzzy control", Journal of Information Processing in Agriculture , 2020, ISSN 2214-3173
[31]OpenCV documentation
https://opencv.org/ 查詢時間:2020.06.14 20:30
[32]王進德(2017)。Raspberry Pi入門與機器人實作應用。 新北市:博碩。
[33]Robert Laganière(2011)。OpenCV2 Computer Vision Application Programming Cookbook。UK:Packt Publishing
  • 同意授權校內瀏覽/列印電子全文服務,於2023-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-09-01起公開。

  • 如您有疑問,請聯絡圖書館