進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2207201923041300
論文名稱(中文) 底床變動造成水面波動時間變化之研究
論文名稱(英文) A study of free surface variation induced by Seabed movements
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 曹瑤
研究生(英文) Yao Tsao
學號 N86061222
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 指導教授-李兆芳
口試委員-李忠潘
口試委員-翁文凱
中文關鍵字 時間領域  造波理論  底床變動 
英文關鍵字 time domain  wave theory  seabed movements 
學科別分類
中文摘要 本研究使用理論解析方法探討底床運動引起之水面波動情形,藉由設置邊界條件,探討一有限等深水槽,底床邊界由靜止開始等速向上運動隨即停止,所造成之水面波動變化,進而討論底床運動造成之最大水位型態與其變因參數間的關係,以了解各項變因對產生水位的影響。因此與直推式造波板步進造波方法相似,故將其與底床運動引起之水面波動情形做比較,探討兩者間的差異。
在作法上使用微小振幅波理論線性化問題,並沿用Lee et al(1989)之有限傅立葉餘弦轉換對空間進行轉換,且不對時間做轉換,而逕行求解,由此改良求解方法,驗證水位函數收斂後,再將解析結果做分析討論。研究結果顯示,位移衝程與最大水位高成正比;而位移時間增加時,到達最大水位的所需時間增加、最大水位高下降、水波寬度增加,最大水位型態漸趨寬扁,並發現底床邊界位移產生水波寬度較寬,波高較低的最大水位型態;而側向邊界位移產生水波寬度較窄,波高較高的最大水位型態。
英文摘要 In this study, the theoretical analysis method is used to investigate the fluctuation of the water surface caused by the bed movements. Exploring a finite-length water tank, the boundary of the bed is stopped after the constant velocity upward movement from the standstill to cause the fluctuation of the water surface. Discussing the relationship between the maximum water level pattern caused by bed movement and its variable parameters to understand the influence of various parameters on the water level. Because it is similar to the piston-type wavemaking method, it is compared with that to explore the difference between the two.
In the method, the problem is linearized by the small amplitude wave theory, and the space is transformed by the finite Fourier cosine transform of Lee et al (1989). And do not convert the time, thereby improving the solution method, verifying that the water level function converges, and then analyzing the analysis results. The results show that the displacement stroke is proportional to the maximum water level. When the time of displacement increases, the time of maximum water level increases, the maximum water level decreases, the water wave width increases, and the maximum water level pattern becomes wider and flatter, and it is found that the boundary displacement of the bottom produces a maximum water level with a wider water wave width and a lower wave height; and the boundary displacement of the lateral produces a maximum water level with a narrower water wave width and a higher wave height.
論文目次 摘要 I
誌謝 XII
目錄 XIII
表目錄 XV
圖目錄 XVI
符號說明 XVIII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究方法 4
1-4本文組織架構 5
第二章 問題描述 6
2-1問題之描述 6
2-2泰勒級數展開邊界條件 8
2-3最大水位型態定義 11
第三章 底床變動造成水面波動時間變化理論解析 14
3-1傅立葉級數表示波浪勢函數 14
3-2控制方程式與邊界條件求解波浪勢函數 16
3-3起始條件求解波浪勢函數 19
3-4波浪勢函數求解水面函數表示式 23
第四章 理論解析結果與探討 25
4-1收斂對求解精度之影響 27
4-2水槽長度對於收斂性之影響 31
4-3底床變動造成水面波動時間變化理論解析之結果探討 32
4-3-1水深對水位型態的影響 32
4-3-2位移衝程對水位型態的影響 35
4-3-3水平抬升寬度對水位型態的影響 37
4-3-4位移時間對水位型態的影響 39
4-4邊界等面積位移造成水面波動時間變化理論解析結果比較 42
4-4-1位移衝程對水位型態的影響 42
4-4-2位移時間對水位型態的影響 44
第五章 結論與建議 47
5-1結論 47
5-2建議 48
參考文獻 49
附錄A 側向邊界位移造成水面波動時間變化理論解析 51
附錄B (3-19)式推導 68
附錄C (3-46)式推導 69
附錄D (3-53)式推導 72
附錄E (3-53)式驗算 74
參考文獻 1. Mauricio Fuentes, Sebastian Riquelme, and Gavin Hayes (2016), “A study of the 2015 Mw 8.3 Illapel earthquake and tsunami: Numerical and analytical approaches”, Pure and Applied Geophysics, Vol.173, pp.1847-1858.
2. Meilan Qi, Yanrong Kuai, and Jinzhao Li (2017), “Numerical simulation of water waves generated by seabed movement”, Applied Ocean Research, Vol.65, pp.302-314.
3. Satoru Tsuchiya, Yoshinori Satou, Masafumi Matsuyama, and Yoshihito Tanaka (2013), “The Effect Generated by Calculation Method of the Sea Bottom Displacement on Tsunami Estimation - Three-dimensional Sea Bottom Crustal Movement Analysis - ”, Journal of Japan Society of Civil Engineers, Ser.B2, Vol.69, No.2, pp.I_441-I_445.
4. Marine Le Gal, Damien Violeau, and Michel Benoit (2017), “Influence of timescales on the generation of seismic tsunamis”, European Journal of Mechanics - B/Fluids, Vol.65, pp.257-273.
5. Maria I. Todorovska and Mihailo D. Trifunac (2001), “Generation of tsunamis by a slowly spreading uplift of the sea floor”, Soil Dynamics and Earthquake Engineering, Vol.21, Issue 2, pp.151-167.
6. T. S. Jang, S. L. Han, and T. Kinoshita (2010), “An inverse measurement of the sudden underwater movement of the sea-floor by using the time-history record of the water-wave elevation”, Wave Motion, Vol.47, Issue 3, pp.146-155.
7. B. B. Zhao, W. Y. Duan, and W. C. Webster (2011), “Tsunami simulation with Green–Naghdi theory”, Ocean Engineering, Vol.38, Issues 2–3, pp.389-396.
8. T. H. Havelock (1929), “Forced Surface Wave on Water”, Philosophical Magazine, Ser.7, Vol.8, pp.569-576.
9. Lamb, H. (1932), “Hydrodynamics”, Dover, New York.
10. Mei, C.C. (1982), “The Applied Dynamics of Ocean Surface Waves”, John Wiley & Sons, Inc., New York.
11. Kennard, E.H. (1949), “Generation of Surface Waves by a Moving Partition”, Quarterly of applied mathematics, Vol.7(3), pp.303-312.
12. Madsen, O.S. (1970), “Wave Generated by a Piston-type Wavemaker”, Proceedings of the 12th Coastal Engineering Conference, Washington, D, C., pp.589-604.
13. Allen T. Chwang (1983), “Nonlinear hydrodynamic pressure on an accelerating plate”, Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa 52242.
14. Lee, J.F., Kuo, J.R., and Lee, C.P. (1989), “Transient Wavemaker Theory”, Journal of hydraulic research, Vol.27, No.5, pp.651-663.
15. 李兆芳(1991),直推式造波其瞬變波浪特性之理論解析,港灣技術第六期,pp.23-40。
16. Chang, Hsien-Kuo and Lin, Shi-Chung (2009), “An Analytical Linear Solution of Transient Waves Generated by a Piston-Type Wave-Maker in a Finite Flume”, Journal of Coastal and Ocean Engineering, Vol 9(1), pp.25-41.
17. Joo, S.W., Schultz, W.W. and Messiter, A.F. (1990), “An Analysis of the Initial-value Wavemaker Problem”, Journal of Fluid Mechanics, Vol. 214, pp.161-183.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw