進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2207201823112700
論文名稱(中文) 通電誘發結晶鋰電池鈦-矽-鋁多層膜負極材料界面特性與充放電機制探討
論文名稱(英文) Interface Characteristic and Charge-Discharge Mechanism of Electrical Induced Crystallization (EIC) Modified Ti-Si-Al Multilayer Anode of Lithium Ion Battery
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 陳彥廷
研究生(英文) Yen-Ting Chen
學號 Q28991033
學位類別 博士
語文別 中文
論文頁數 94頁
口試委員 指導教授-洪飛義
指導教授-呂傳盛
口試委員-李旺龍
口試委員-葉明龍
口試委員-程金保
口試委員-許正勳
中文關鍵字 鋰電池  負極  鈦-矽-鋁  擴散  電致結晶 (EIC) 
英文關鍵字 lithium ion battery  anode  Ti-Si-Al  diffusion  electrical induced crystallization (EIC) 
學科別分類
中文摘要 鋰離子電池是現今最常見的二次電池,被廣泛應用在可攜式電子產品、電動汽車、航空航天及軍事科技上。電池的電極材料是影響充放電性能最根本的要素。現有的石墨負極材料電容量偏低,矽基負極材料擁有極高的理論電容量可以改善此問題,但其充放電時的體積膨脹效應會使得循環壽命大幅下降,是亟需改善的缺點。
本研究設計以鈦膜和鋁膜包夾住薄膜電池充放電時體積變化最為劇烈的矽膜,成為鈦-矽-鋁多層膜鋰離子電池負極。薄膜電極在結晶度與電導表現並不出色,有賴後處理改善。多層膜結構若採用傳統的退火熱處理,當高溫達到一定程度時,會使得相異各層因熱膨脹係數不同而產生彎曲變形現象,需謹慎考慮熱處理條件。此時電致結晶 (Electrical induced crystallization, EIC) 處理成為一個值得嘗試的後處理方法,其擴散摻雜效果與結晶度增益特性都能滿足薄膜負極的應用需求。
本研究首先釐清EIC處理對於多層膜材料的擴散行為,電致結晶處理可以室溫下使高電阻結構誘發大量的焦耳熱,並增進材料的結晶度。另一方面,對於低電阻結構則可以引發明顯的電遷移現象,在電遷移過程中低電阻層會產生許多空位缺陷,並促進空位擴散的發生,故能達到更佳的擴散效果。接著驗證EIC處理應用於鋁-矽雙層膜負極的改質,實驗結果證明電致擴散改質具有極佳的電容量增進效果。從TEM微結構分析可發現鋁銅之間的介金屬化合物 (IMC) 層因電致擴散有顯著的成長。此非晶IMC層可以提供額外的鋰離子擴散通道,因此能有效增進材料的充放電特性。
最終檢視鈦-矽-鋁多層膜結構作為鋰離子電池負極的特性。此結構在100次充放電循環後仍能保有仍能保有1112 mAhg-1的電容量,優於現行商用石墨材料,其中結構中的鈦層扮演充放電膨脹緩衝材料,能有效抑制矽層在充放電時的體積變化,使得循環壽命顯著上升。對其施以EIC擴散改質更大幅的增加電容量表現,在100次循環後高達1602 mAhg-1,其原因在於鋁、銅原子的電遷移使得矽層電阻大幅下降,並使結構的空位缺陷增加,可作為鋰離子嵌脫反應的額外通道。
EIC擴散處理能在低溫條件下有效增加材料的結晶特性,同時其優異的擴散促進效果亦對摻雜製程有所助益;本研究證明對於多層膜鋰離子電池電極而言,EIC處理是最佳的後處理方法,可以取代過去受限的後熱處理,帶給薄膜電極更理想的充放電循環表現,此新穎的薄膜電極後處理方式,可供鋰離子電池工業應用參考。
英文摘要 In this study, an Ti-Si-Al multilayer thin film structure is designed as the anode of a lithium ion battery. The novel structure restricts the expansion of Si during charge-discharge, and its battery capacity can reach 1112 mAhg-1 after a 100-cycle charge-charging test under a 0.2 C charge-discharge rate without annealing. Notably, after a 200 ˚C vacuum annealing process, the cyclic capacity of the anode is rising to 1208 mAhg-1 through crystallization of the Al and Ti buffer layer. However, its thermal diffusion behavior in the Al/Si or Ti/Si interfaces seriously reduces the performance and restricts the expansion of Si. The electrically induced crystallization (EIC) process not only performs crystallization but also controls the interfacial stability, after which its capacity can obviously improve to 1602 mAhg-1 after 100 cycles. Using EIC, the electron flow drives the Cu and Al atoms to endow the Si matrix with doping properties and further increases the electron conductivity of the anode. This result demonstrates that the EIC process is a suitable post-treatment process for multilayer anodes and provides a reference for future battery designs.
論文目次 總目錄
中文摘要………………………………………………………………………I
英文延伸摘要……………………………………………………………….III
誌謝……………………………………………………………………..XXVII
總目錄……………………………………………………………...….XXVIII
表目錄………………………………………………………………...…XXXI
圖目錄…………………………………………………………………..XXXII
第一章 緒論………………………………………………………………...1
第二章 文獻回顧…………………………………………………………...3
2-1 鋰離子電池工作原理………………………………………………3
2-2 鋰離子電池負極發展………………………………………………3
2-3 鋰離子電池鈦、矽、鋁基負極材料………………………………5
2-4 薄膜退火熱處理……………………………………………………7
2-5 電致結晶處理………………………………………………………7
第三章 實驗方法………………………………………………………….10
3-1 濺鍍薄膜製程…………………..………………………………....10
3-2 通電結晶擴散處理……………………………………………..…11
3-3 測試用電池組裝…………………………………………………..11
3-4 充放電循環測試………………………………………………..…12
3-5 低掠角X光繞射分析…………………………………………….12
3-6 四點探針電阻率量測…………………………………………..…13
3-7 掃描式電子顯微鏡分析…………………………………………..14
3-8 高解析穿透式電子顯微鏡分析…………………………………..14
3-9 X射線光電子能譜儀縱深分析…………………………………..15
第四章 多層膜結構電熱擴散機制探討………………………………….20
4-1 實驗目的…………………………………………………………..20
4-2 實驗步驟與流程…………………………………………………..20
4-3 結果與討論………………………………………………………..22
4-4 小結………………………………………………………………..28
第五章 電熱擴散應用於鋁-矽雙層薄膜負極之充放電特性探討………40
5-1 實驗目的…………………………………………………………..40
5-2 實驗步驟與流程…………………………………………………..40
5-3 結果與討論………………………………………………………..41
5-4 小結………………………………………………………………..44
第六章 電熱擴散應用於鈦-矽-鋁多層膜負極探討……………………..56
6-1 實驗目的…………………………………………………………..56
6-2 實驗步驟與流程…………………………………………………..57
6-3 結果與討論………………………………………………………..58
6-4 小結………………………………………………………………..65
第七章 總結論…………………………………………………………….85
參考文獻…………………………………………………………………….87

表目錄
表3-1 實驗用靶材之濺鍍參數…………………………………………...17
表4-1 不同後處理下的ZnO-Ti-Si電阻率……………………………….29
表5-1 EIC處理前後鋁-矽雙層膜電阻率………………………………...45
表5-2 未處理鋁-矽雙層膜負極EDX分析……………………………….46
表5-3 EIC處理鋁-矽雙層膜負極EDX分析……………………………47
表6-1 TSA負極在不同處理下之電阻率……………………………...…66
表6-2 未處理TSA負極TEM上各點EDX元素分布………………….67
表6-3 熱處理後TSA負極TEM上各點EDX元素分布…….…………68
表6-4 EIC處理後TSA負極TEM上各點EDX元素分布…………….69

圖目錄
圖2-1 鋰離子電池構造與工作原理示意圖……………………………….9
圖3-1 圖3-1 HS-cell組裝示意圖………………………………………..18
圖3-2 四點探針機理: (a)四點探針測量
(b)四點探針工作原理………………………....19
圖4-1 ZnO-Ti-Si系統EIC實驗方法示意圖…………….………………30
圖4-2 實驗流程圖………………………………………………………...31
圖4-3 EIC通電校正曲線與電阻…………………………………………32
圖4-4 EIC處理誘發溫度…………………………………………………33
圖4-5 ZT40S的TEM結構特徵………………………………………….34
圖4-6 ZT20S之TEM解析
(a)明視野 (b) TZO擇區繞射圖(c)TiSix擇區繞射圖…………….35
圖4-7 ZT20S於不同處理下低掠角XRD ……………………………….36
圖4-8 不同處理下的ZTS結構XPS縱深分析
(a) 未處理 (b) 退火熱處理 (c) EIC處理………………………..37
圖4-9 靜態熱擴散與電熱擴散機制示意圖……………………………...39
圖5-1 Si-Al負極EIC通電結構示意圖…………………………….…....48
圖5-2 實驗流程圖…………………………………………………….......49
圖5-3 Si-Al負極EIC處理誘發溫度…………………….………………50
圖5-4 不同處理下鋁-矽雙層膜負極充放電循環壽命圖………………..51
圖5-5 EIC處理前後鋁-矽雙層膜負極嵌脫鋰曲線圖
(a)未處理 (b)EIC處理…………………………………………….52
圖5-6 充放電後極片SEM表面形貌 (a)未處理 (b) EIC處理………...53
圖5-7 未處理的鋁-矽負極TEM結構特徵………………………………54
圖5-8 EIC處理後的鋁-矽負極TEM結構特徵………………………….55
圖6-1 Ti-Si-Al負極EIC處理通電方法示意圖…..………………….…..70
圖6-2 實驗流程圖…………………………………………..…………….71
圖6-3 TSA負極GIXRD結晶度分析………………………..…………..72
圖6-4 充放電循環測試10次前後的TSA負極表面形貌SEM觀察
(a)未處理電極充放電前 (b)未處理電極充放電後
(c)退火熱處理電極充放電後 (d) EIC處理電極充放電後……....73
圖6-5 不同處理的TSA負極在充放速率0.2C下充放電循環壽命…….75
圖6-6 不同處理下TSA負極嵌脫鋰電位對電容量圖
(a)未處理 (b)退火熱處理 (c)EIC處理…………...……………....76
圖6-7 未處理TSA負極TEM結構特徵………………………………….78
圖6-8 TSA負極200oC真空熱處理後TSA負極TEM結構特徵………..79
圖6-9 EIC處理後TSA負極TEM結構特徵…………………………….80
圖6-10 不同處理下XPS元素縱深分析
(a)未處理 (b)退火熱處理 (c) EIC…………………………..…..81
圖6-11 TSA負極後處理擴散機制示意圖
(a)未處理 (b)退火熱處理 (c) EIC……………………………....83
參考文獻 [1] 黃可龍、王兆翔、劉素琴,鋰離子電池原理與技術,台北:五南圖書,2010年。
[2] J. O. Besenhard, J. Yang and M. Winter, “Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?”, Journal of Power Sources 68, 87-90 (1997).
[3] Z. M. Qin, B. Hong, B. Y. Duan, S. Hong, Y. C. Chen, Y. Q. Lai and J. Feng, “Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte”, Electrochimica Acta 276, 412-416 (2018).
[4] J. Kim, J. Lee, H. Ma, H. Y. Jeong, H. Cha, H. Lee, Y. Yoo, M. Park and J. Cho, “Controllable solid electrolyte interphase in nickel-rich cathodes by an electrochemical rearrangement for stable lithium-ion batteries”, Advanced Materials 30, 1704309 (2018).
[5] S. Douafer, H. Lahmar, M. Benamira, G. Rekhila and M. Trari, “Physical and photoelectrochemical properties of the spinel LiMn2O4 and its application in photocatalysis”, Journal of Physics and Chemistry of Solids 118, 62-67 (2018).
[6] J. X. Huang, J. L. Wang, H. X. Zhong and L. Z. Zhang, “N-cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries”, Journal of Materials Science 53, 9690-9700 (2018).
[7] L. Y. Zhao, J. C. Bennett and M. N. Obrovac, “Hexagonal platelet graphite and its application in Li-ion batteries”, Carbon 134, 507-518 (2018).
[8] Y. T. Chen, F. Y. Hung, T. S. Lui and H. P. Tan, “Microstructure and high temperature charge-discharge characteristics of 3D additive manufacturing produced Mg-Ni anode”, Materials Transactions 59, 685-689 (2018).
[9] H. Huang, X. K. Ju, H. Li, B. H. Qu and T. H. Wang, “Construction of complex WO3-SnO2 hollow nanospheres as a high-performance anode for lithium-ion batteries”, Journal of Alloys and Compounds 744, 375-380 (2018).
[10] S. PalDey and S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing 342, 58-79 (2003).
[11] X. Zuo, J. Zhu, P. Mueller-Bushbaum and Y. J. Cheng, “Silicon based lithium-ion battery anodes: a chronicle perspective review”, Nano Energy 31, 113-143 (2016).
[12] J. Cabana, L. Monconduit, D. Larcher and M. R. Palacin, “Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions”, Advanced Materials 22, E170-E192 (2010).
[13] L. W. Ji, Z. Lin, M. Alcoutlabi and X. W. Zhang, “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries”, Energy & Environmental Science 4, 2682- 2699 (2011).
[14] 吳昭漢,鋰電池用AlxSiyAg1-(x+y)薄膜負極之後熱處理效應及其充放電特性研究,國立成功大學材料科學及工程學系博士論文,2014年。
[15] C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, “Li-alloy based anode materials for Li secondary batteries”, Chemical Society Reviews 39, 3115-3141 (2010).
[16] N. Nitta, F. X. Wu, J. T. Lee and G. Yushin, “Li-ion battery materials: present and future”, Materials Today 18, 252-264 (2015).
[17] P. Limthongkul, Y. T. Jang, N. J. Dudney and Y. M. Chiang, “Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage”, Acta Materialia 51, 1103-1113 (2003).
[18] U. Kasavajjula, C. S. Wang and A. J. Appleby, “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells”, Journal of Power Sources 163, 1003-1039 (2007).
[19] J. M. Tarascon and M. Armand, “Issue and changes facing rechargeable lithium batteries”, Nature 414, 359-367 (2001).
[20] P. Verma, P. Maire and P. Novak, “A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries”, Electrochimica Acta 18, 252-264 (2015).
[21] J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evans, “Thin-film lithium and lithium-ion batteries”, Solid State Ionics 135, 33-45 (2000).
[22] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review”, Energy & Environmental Science 4, 3243-3262 (2011).
[23] J. Santos-Pena, T. Brousse, D. M. Schleich, “Mg2Si and MSi2 (M = Ca, Fe) silicon alloys as possible anodes for lithium batteries,” Ionics 6, 133-138 (2000).
[24] Y. Hamon, T. Brousse, F. Jousse, P. Topart, P. Buvat, D. M. Schleich, “Aluminum negative electrode in lithium ion batteries,” Journal of Power Sources 97, 185-187 (2001).
[25] G. N. Zhu, Y. G. Wang, Y. Y. Xia, “Ti-based compounds as anode materials for Li-ion batteries,” Energy & Environmental Science 5, 6652-6667 (2012).
[26] H. Kim, B. Park, H. J. Sohn, T. Kang, “Electrochemical characteristics of Mg-Ni alloys as anode materials for secondary Li batteries,” Journal of Power Sources 90, 59-63 (2000).
[27] J. B. Goodenough and K. S. Park, “The Li-Ion rechargeable battery: a perspective”, Journal of The American Chemical Society 135, 1167-1176 (2013).
[28] J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan and X. W. Lou, “Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage”, Advanced Materials 24, 5166-5180 (2012).
[29] N. S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, H and S. S.Kim, “Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode”, Journal of Power Sources 161, 1254-1259 (2006).
[30] W. J. Zhang, “A review of the electrochemical performance of alloy anodes for lithium-ion batteries,” Journal of Power Sources 196,13-24 (2011).
[31] H. Li, Z. X. Wang, L. Q. Chen and X. J. Huang, Research on Advanced Materials for Li-ion Batteries”, Advanced Materials 21, 4593-4607 (2009).
[32] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob and D. Aurbach, “A review of advanced and practical lithium battery materials”, Journal of Materials Chemistry 21, 9938-9954 (2011).
[33] H. Y. Lee and S. M. Lee, “Carbon-coated nano-Si dispersed oxides/graphite composite as anode material for lithium ion batteries”, Electrochemistry Communications 6, 465-469 (2004).
[34] I. S. Kim and P. N. Kumta, “High capacity Si/C nanocomposite anodes for Li-ion batteries”, Journal of Power Sources 136, 145-149 (2004).
[35] J. Chen and F. Y. Cheng, “Combination of lightweight elements and nanostructured materials for batteries”, Accounts of Chemical Research 42, 713-723 (2009).
[36] G. F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J. L. Tirado and T. Djenizian, “TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries”, Electrochimica Acta 54, 4262-4268 (2009).
[37] F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan and Y. G. Guo, “Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries”, Advanced Materials 23, 4415 (2011).
[38] X. D. Wum, Z. X. Wang, L. Q. Chen and X. J. Huang, “Ag-enhanced SEI formation on Si particles for lithium batteries”, Electrochemistry Communications 5, 935-939 (2003).
[39] J. R. Szczech and S. Jin, “Nanostructured silicon for high capacity lithium battery anodes”, Energy & Environmental Science 4, 56-72 (2011).
[40] B. Liang, Y. P. Liu and Y. H. Xu, “Silicon-based materials as high capacity anodes for next generation lithium ion batteries”, Journal of Power Sources 267, 469-490 (2014).
[41] J. B. Kim, B. S. Jun and S. M. Lee, “Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries”, Electrochimica Acta 50, 3390-3394 (2005).
[42] M. J. Lindsay, G. X. Wang and H. K. Liu, “Al-based anode materials for Li-ion batteries”, Journal of Power Sources 119, 84-89 (2003).
[43] K. Edstrom, T. Gustafsson and J. O. Thomas, “The cathode-electrolyte interface in the Li-ion battery”, Electrochimica Acta 50, 397-403 (2004).
[44] D. Larcher, L. Y. Beaulieu, O. Mao, A. E. George and J. R. Dahn, “Study of the reaction of lithium with isostructural A2B and various AlxB alloys”, Journal of The Electrochemical Society 147, 1703-1708.
[45] D. Aurbach, E. Zinigrad, Y. Cohen and H. Teller, “A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions”, Solid State Ionics 148, 405-416 (2002).
[46] R. Z. Hu, M. Q. Zeng, C. Y. Li and M. Zhu, “Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al-Sn system”, Journal of Power Sources 188, 268-273 (2009).
[47] E. Buiel and J. R. Dahn, “Li-insertion in hard carbon anode materials for Li-ion batteries.”, Electrochimica Acta 45, 121-130 (1999).
[48] Y. S. Lee, J. H. Lee, Y. W. Kim, Y. K. Sun and S. M. Lee, “Rapidly solidified Ti-Si alloys/carbon composites as anode for Li-ion batteries”, Electrochimica Acta 52, 1523-1526 (2006).
[49] Y. H. Wang, Y. He, R. J. Xiao, H. Li, K. E. Aifantis and X. J. Huang, “Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries”, Journal of Power Sources 202, 236-245 (2012).
[50] H. B. Wu, J. S. Chen, H. H. Hng and X. W. Lou, “Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries”, Nanoscale 4, 2526-2542 (2012).
[51] A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia and P. G. Bruce, “Lithium-ion intercalation into TiO2-B nanowires”, Advanced Materials 17, 862 (2005).
[52] S. Guo, H. X. Li, H. M. Bai, Z. L. Tao and J. Chen, “Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries”, Journal of Power Sources 248, 1141-1148 (2014).
[53] G. Y. Li, Z. H. Han, J. W. Tian, L. Q. Zhang and M. Y. Gu, “A study on the interface microstructure and superhardness effect of W/Mo multilayer”, Rare Metal Materials and Engineering 32, 1-4 (2003).
[54] J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitoru, “Reactive-sputter-deposited tin films on glass substrates”, Thin Solid Films 197, 117-128 (1991).
[55] V. Gupta and A. Mansingh, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film”, Journal of Applied Physics 80, 1063-1073 (1996).
[56] Z. D. Huang, B. A. Zhang, S. W. Oh, Q. B. Zheng, X. Y. Lin, N. Yousefi and J. K. Kim, “Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors”, Journal of Materials Chemistry 22, 3591-3599 (2012).
[57] F. Thoss, L. Giebeler, S. Oswald, H. Ehrenberg and J. Eckert, “Study on the reversible Li-insertion of amorphous and partially crystalline Al86Ni8La6 and Al86Ni8Y6 alloys as anode materials for Li-ion batteries”, Electrochimica Acta 60, 85-94 (2012).
[58] Z. Zhou, M. Wu, L. Huang and G. Xu, “Amorphous Si film anode coupled with LiCoO2 cathode in Li-ion cell”, Journal of Power Sources 174, 533-537 (2007).
[59] V. Baranchugov, E. Markevich, E. Pollak, G. Salitra and D. Aurbach, “Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes”, Electrochemistry Communications 9, 796-800 (2007).
[60] F. Y. Hung, “Crystallization Mechanism and Raman Characteristics of ZnO/In/ZnO Thin Film Using an Electrical Current Method”, Materials Transactions 52, 1138-1141 (2011).
[61] K. J. Chen, F. Y. Hung, T. S. Lui, S. P. Chang and W. L. Wang, “The inter-metallic oxide of ZnO/ITO/ZnO tri-layer films using a heat-induced diffusion mechanism”, Applied Surface Science 273, 598-602 (2013).
[62] Y. T. Chen, F. Y. Hung, S. J. Chang, T. S Lui and L. H. Chen, “Microstructural characteristics of InGaZnO thin film using an electrical current method”, Materials Transactions 53, 733-738 (2012).
[63] 王文龍,通電機制對 ZnO-In/Ag-ZnO 薄膜顯微組織與光電特性之影響,國立成功大學奈米科技暨微系統工程研究所碩士論文,2009年。
[64] Y. W. Tseng, F. Y. Hung, T. S. Lui, Y. T. Chen, R. S. Xiao and K. J. Chen, “Electrical crystallization mechanism and interface characteristics of nanowire ZnO/Al structures fabricated by the solution method”, Journal of Nanomaterials 2012, 208362 (2012).
[65] K. J. Chen, F. Y. Hung, T. S. Lui, S. J. Chang and Z. S. Hu, “The low-temperature crystallization and interface characteristics of ZnInSnO/In films using a bias-crystallization mechanism”, Journal of Nanomaterials 2012, 272387 (2012).
[66] P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum 56, 159-172 (2000).
[67] MIT Electric Vehicle Team, “A Guide to Understanding Battery Specifications” (2008).
[68] 周建志,濺鍍非晶質SbTe合金薄膜電阻特性之Ag/In複合添加與結晶化效應研究,國立成功大學材料科學及工程學系博士論文,2007年。
[69] 國科會精密儀器發展中心,材料電子顯微鏡學,台北:全華圖書,2004年。
[70] S. Roy, S. V. Divinski and A. Paul, “Reactive diffusion in the Ti-Si system and the significance of the parabolic growth constant”, Philosophical Magazine 94, 683-699 (2014).
[71] James W. Robinson, Eileen M. Skelly Frame and George M. Frame II. Marcel Dekker, Undergraduate instrumental analysis, 6th edition, New York, 2005
[72] J. R. Black, “Electromigration-a brief survey and some recent results,” IEEE Transactions on Electron Devices 16, 338-347 (1969).
[73] K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects,” Journal of Applied Physics 84, 5451-5473 (2003)
[74] K. Zaghib, J. Dube, A. Dallaire, K. Galoustov, A. Guerfi, M. Ramanathan, A. Benmayza, J. Prakash, A. Mauger and C. M. Julien, “Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries”, Journal of Power Sources 219, 36-44 (2012).
[75] T. Laurila, V. Vuorinen and M. Paulasto-Krockel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering”, Materials Science & Engineering R-reports 68, 1-38 (2010).
[76] S. A. Chambers, D. M. Hill, F. Xu and J. H. Weaver, “Silicide formation at the Ti/Si (111) interface - diffusion parameters and behavior at elevated-temperatures”, Physical Review B 35, 634-640 (1987).
[77] M. Park, X. C. Zhang, M. D. Chung, G. B. Less and A. M. Sastry, “A review of conduction phenomena in Li-ion batteries”, Journal of Power Sources 195, 7904-7929 (2010).
[78] M. S. Islam and C. A. Fisher, “Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties”, Chemical Society Reviews 43, 185-204 (2014).
[79] Y. Du, Y. A. Chang, B. Y. Huang, W. P. Gong, Z. P. Jin, H. H. Xu, Z. H. Yuan, Y. Liu, Y. H. He and F. Y. Xie, “Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation”, Materials Science and Engineering A-structural Materials Properties Microstructure and Processing 363, 140-151 (2003).
[80] M. C. Flemings, “Behavior of metal-alloys in the semisolid state”, Metallurgical Transactions A-physical Metallurgy and Materials Science 22, 957-981 (1991).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw