進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2207201613593000
論文名稱(中文) 以感測設備資料分析學習歷程之發展與應用
論文名稱(英文) Development and Application of Learning Processes Analysis based on Data Collected by Sensors
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 104
學期 2
出版年 105
研究生(中文) 黃展鵬
研究生(英文) Jan-Pan Hwang
學號 N98981145
學位類別 博士
語文別 英文
論文頁數 55頁
口試委員 指導教授-黃悅民
召集委員-楊接期
口試委員-林豪鏘
口試委員-林志敏
口試委員-吳智鴻
口試委員-王宗一
中文關鍵字 感測科技  情感運算  學習狀態  學習歷程  認知風格  電子書  網路學習 
英文關鍵字 Sensor technology  affective computing  learning status  learning processes  cognitive style  e-book  Web-based learning 
學科別分類
中文摘要 現代人的生活已與資訊科技緊密的聯結,也因此感測技術已經比以前發揮了更為重要的作用。它的相關應用已經漸漸超出我們過往理解的限制,例如在教育方面。同時,軟硬體和網際網路的進步,數位學習的普及已經引起了很大的關注。通過導入感測技術於數位學習環境中,在學習行為的分析上,可以注入數位學習平台中更強的功能性。在自主學習的情況下,學生往往苦於不能被輕易發現和修正學習過程所發生的問題。在這項研究中,我們提出了一個感測器輔助學習的機制,以監測在學習過程中學習者的專注力及學習狀態。此系統被納入二個平台進行使用。我們對感測器的輔助機制分別進行二個實驗。結果表明,在與透過感測器輔助機制下的系統回饋使學生的學習表現更好。這些結果針對數位學習系統設計的影響進行了討論。在未來,希望以感測器所收集的資料進行學習行為的即時分析,進而提供學習者及教師即時回饋,以期望能建立一個不同以往的適性化學習系統。
英文摘要 Modern life has a strong tie with ICT technology, so as to the sensing technology which is playing an more important role than before. Its application is somewhat more than we have learned, such as education. Meanwhile, with the advance of software/hardware and the popularity of the Internet, e-learning have drawn much of attention. With the introduction of sensing technology in e-learning environment, e-learning platform is able to detect learning status. In self-learning situation, learners often suffer from detraction problem which cannot be easily detected and amended. In this study, we proposed a sensor-assisted learning mechanism to monitor a learner’s states while learning. The mechanism has been intergrated into two platform to create a personalized e-learning system. We proceed to conduct two experiments for this mechanism. The result shows that learners’ learning performance is better with a higher awareness of system feedback by sensors. The implications of these results for the design of e-learning system are discussed in this paper. The ultimate objective is to establish an adaptive personalized learning system by the feedback of data collected by sensors.
論文目次 摘要 i
Abstract ii
誌謝 iii
Table of Contents v
List of Tables vii
List of Figures viii
Chapter 1  Introduction 1
Chapter 2  Literature Review 3
2.1 Web-based Learning 3
2.2 Cognitive style: Holist-Serialist 4
2.3 Sensor technology with affective computing 6
2.4 Heart rate valility and learning status 10
Chapter 3  Design of Sensor-assisted Learning Mechanism 12
3.1 Equipment – Pressure Sensitive Cushion 13
3.2 Equipment – Pulse Detection Mouse 15
3.3 Equipment – Built-in webcam with OpenCV 16
3.4 Modeling of SALM 17
3.4.1 ID3 and C4.5 Algorithm 18
3.4.2 Building Tree & Trimmed Tree 18
Chapter 4  Experiment Design and Procedure 22
4.1 Experiment for Web-based learning 22
4.1.1 Learning Objectives and Scenarios 22
4.1.2 Participants 24
4.1.3 Research instruments 25
4.1.4 Procedure 26
4.2 Experiment for E-books Reading Enviornment 29
4.2.1 Learning Objectives and Scenarios 29
4.2.2 Participants 32
4.2.3 Research instruments 32
4.2.4 Procedure 33
Chapter 5  Results and Findings 36
5.1. WBL Scenarios 36
5.1.1 Description of the participants 36
5.1.2 Learning performance 36
5.1.3 Matching/Mismatching 37
5.1.4 Emotional feedback of learners 40
5.2 e-Book Reading Scenarios 41
5.2.1 Learning performance 41
5.2.2 SALM Acceptance Questionnaire Analysis 44
5.2.3 Interview and Feedback 44
Chapter 6  Discussions and Conclusion 47
6.1 Discussions 47
6.2 Conclusions 47
6.3 Future Works 48
References 49
參考文獻 Afonso, N., Silva, J., Manga, A., Hossein Tcharmtchi, M., Abrego-Moya, V., Thammasitboon, S., . . . Coss Bu, J. (2013). 151: Integrating Evidence-Based Learning Sciences Into Continuing Education for Pediatric Sepsis. Critical Care Medicine, 41(12), A32. doi: 10.1097/01.ccm.0000439300.24256.7b
Anonymous. (2011). OpenCV Wiki, from http://opencv.willowgarage.com/wiki/
Bloss, R. (2011). Real-time pressure mapping system. Sensor Review, 31(2), 101-105. doi: 10.1108/02602281111109943
Burleson, W. (2006). Affective Learning Companions: strategies for empathetic agents with real-time multimodal affective sensing to foster meta-cognitive and meta-affective approaches to learning, motivation, and perseverance. Massachusetts Institute of Technology, Cambridge, Massachusetts.
Cáceres, M. J., Chamoso, J. M., & Azcárate, P. (2010). Analysis of the revisions that pre-service teachers of mathematics make of their own project included in their learning portfolio. Teaching and Teacher Education, 26(5), 1186-1195. doi: 10.1016/j.tate.2010.01.003
Chen, C.-M., & Lee, T.-H. (2011). Emotion recognition and communication for reducing second-language speaking anxiety in a web-based one-to-one synchronous learning environment. British Journal of Educational Technology, 42(3), 417-440. doi: 10.1111/j.1467-8535.2009.01035.x
Chen, H.-R., Hwang, J.-P., Wu, T.-T., Huang, Y.-M., & Hsueh, H.-T. (2011, 6-8 July 2011). Assessment of Implementing a Digital Game-based Learning System over Facebook. Paper presented at the The 11th IEEE International Conference on Advanced Learning Technologies (ICALT).
Chen, L.-H. (2010). Web-based learning programs: Use by learners with various cognitive styles. Computers & Education, 54(4), 1028-1035. doi: 10.1016/j.compedu.2009.10.008
Chen, M.-Y. (1998). Classroom observation I - a teachers' professional competence be omit. Educators and Professional Development, 15, 48-54.
Chen, S. Y., & Macredie, R. D. (2004). Cognitive modeling of student learning in Web-based instructional programs. International Journal of Human-Computer Interaction, 17(3), 375-402.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Ćukušić, M., Alfirević, N., Granić, A., & Garača, Ž. (2010). e-Learning process management and the e-learning performance: Results of a European empirical study. Computers & Education, 55(2), 554-565. doi: 10.1016/j.compedu.2010.02.017
De Wied, M., Boxtel, A. V., Posthumus, J. A., Goudena, P. P., & Matthys, W. (2009). Facial EMG and heart rate responses to emotion-inducing film clips in boys with disruptive behavior disorders. Psychophysiology, 46(5), 996-1004. doi: 10.1111/j.1469-8986.2009.00851.x
Domagk, S., Schwartz, R. N., & Plass, J. L. (2010). Interactivity in multimedia learning: An integrated model. Computers in Human Behavior, 26(5), 1024-1033. doi: 10.1016/j.chb.2010.03.003
Drigas, A., & Karyotaki, M. (2013). E-learning and ICTs Applications in Nutrition Science. International Journal of Recent Contributions from Engineering, Science & IT (iJES), 1(2).
Ellis, R. D., & Kurniawan, S. H. (2000). Increasing the usability of online information for older users: A case study in participatory design. International Journal of Human-Computer Studies, 12(2), 236-276.
Ford, N. (1985). Learning Styles and Strategies of Postgraduate Students. British Journal of Educational Technology, 16(1), 65-77. doi: 10.1111/j.1467-8535.1985.tb00483.x
Ford, N., & Chen, S. Y. (2000). Individual Differences, Hypermedia Navigation, and Learning: An Empirical Study. Journal of Educational Multimedia and Hypermedia, 9.
Goleman, D. (1995). Emotional Intelligence: Why It Can Matter More Than IQ for Character, Health and Lifelong Achievement. New York: Bantam Books.
Graf, S., Liu, T. C., & Kinshuk. (2010). Analysis of learners' navigational behaviour and their learning styles in an online course. Journal of Computer Assisted Learning, 26(2), 116-131. doi: 10.1111/j.1365-2729.2009.00336.x
Hatfield, B. D., Landers, D. M., & Ray, W. J. (1987). Cardiovascuiar-CNS Interactions During a Self-Paced, Intentional Attentive State: Elite Marksmanship Performance. Psychophysiology, 24(5), 542-549. doi: 10.1111/j.1469-8986.1987.tb00335.x
Hsieh, C.-W., Shen, C.-T., Chao, Y.-P., & Chen, J.-H. (2007). Study of Human Affective Response on Multimedia Contents. In R. Magjarevic & J. H. Nagel (Eds.), IFMBE Proceedings (Vol. 14, pp. 787-791): Springer Berlin Heidelberg.
Huang, Y.-M., Chen, H.-C., Hwang, J.-P., & Huang, Y.-M. (2013). Application of Cloud Technology, Social Networking Sites and Sensing Technology to E-Learning. In R.-H. Huang, Kinshuk & J. M. Spector (Eds.), Reshaping Learning (pp. 343-364). Berlin: Springer Berlin Heidelberg.
Huang, Y.-M., Chen, M.-Y., & Mo, S.-S. (2015). How do we inspire people to contact aboriginal culture with Web2.0 technology? Computers & Education, 86, 71-83. doi: 10.1016/j.compedu.2015.03.001
Huang, Y.-M., & Chiu, P.-S. (2015a). The effectiveness of a meaningful learning-based evaluation model for context-aware mobile learning. British Journal of Educational Technology, 46(2), 437-447. doi: 10.1111/bjet.12147
Huang, Y.-M., & Chiu, P.-S. (2015b). The effectiveness of the meaningful learning-based evaluation for different achieving students in a ubiquitous learning context. Computers & Education, 87, 243-253. doi: 10.1016/j.compedu.2015.06.009
Huang, Y.-M., Hwang, J.-P., & Chen, S. Y. (In press). Matching/mismatching in web-based learning: a perspective based on cognitive styles and physiological factors. Interactive Learning Environments, 1-17. doi: 10.1080/10494820.2014.978791
Huang, Y.-M., & Liang, T.-H. (2015). A technique for tracking the reading rate to identify the e-book reading behaviors and comprehension outcomes of elementary school students. British Journal of Educational Technology, 46(4), 864-876. doi: 10.1111/bjet.12182
Huang, Y.-M., Liang, T.-H., Su, Y.-N., & Chen, N.-S. (2012). Empowering personalized learning with an interactive e-book learning system for elementary school students. Educational Technology Research and Development, 60(4), 703-722. doi: 10.1007/s11423-012-9237-6
Hwang, J.-P., Wu, T.-T., Lai, F.-J., & Huang, Y.-M. (2011, Nov. 28 2011-Dec. 1 2011). A sensor-assisted model for estimating the accuracy of learning retention in computer classroom. Paper presented at the 2011 Fifth International Conference on Sensing Technology (ICST).
Jones, C. M., & Troen, T. (2007). Biometric valence and arousal recognition. Paper presented at the Proceedings of the 19th Australasian conference on Computer-Human Interaction: Entertaining User Interfaces, Adelaide, Australia.
Jraidi, I., & Frasson, C. (2013). Student's uncertainty modeling through a multimodal sensor-based approach. Educational Technology & Society, 16(1), 219-230.
Kamiya, K., Kudo, M., Nonaka, H., & Toyama, J. (2008). Sitting posture analysis by pressure sensors. Paper presented at the The 19th International Conference on Pattern Recognition, ICPR 2008, Tampa, FL.
Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical & Biological Engineering & Computing, 42(3), 419-427. doi: 10.1007/BF02344719
Lacey. (1967). Somatic response patterning and stress: Some revisions of activation theory. In M. H. Appley & R. Trumbull (Eds.), Psychological stress (pp. 14-42). New York: Appleton-Century Croft.
Lacey, B. C., & Lacey, J. I. (1974). Studies of heart rate and other bodily processes in sensorimotor behavior. In P. A. Obrist, A. H. Black, J. Brener & L. V. DiCara (Eds.), Cardiovascular psychophysiology: Current issues in response mechanisms, biofeedback, and methodology (pp. 538-564). Chicago: Aldine.
Lacey, B. C., & Lacey, J. I. (1980). Cognitive modulation of time-dependent primary bradycardia. Psychophysiology, 17, 209-221.
Landers, D. M., Han, M., Salazar, W., Petruzzello, S. J., Kubitz, K. A., & Gannon, T. L. (1994). Effects of learning on electroencephalographic and electrocardiographic patterns in novice archers. International Journal of Sports Psychology, 22, 56-71.
Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009). Neural correlates of heart rate variability during emotion. NeuroImage, 44(1), 213-222. doi: 10.1016/j.neuroimage.2008.07.056
Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50(5), 372-385.
LeDoux, J. (1994). Emotion, memory, and the brain. Scientific American, 270, 50-57.
Liang, T.-H., & Huang, Y.-M. (2014). An Investigation of Reading Rate Patterns and Retrieval Outcomes of Elementary School Students with E-books. Educational Technology & Society, 17(1), 218-230.
Liu, M. C., Lai, C. H., Su, Y. N., Huang, S. H., Chien, Y. C., Huang, Y. M., & Hwang, J. P. (2015). Learning with Great Care: The Adoption of the Multi-sensor Technology in Education. In A. Mason, S. C. Mukhopadhyay & K. P. Jayasundera (Eds.), Sensing Technology: Current Status and Future Trends III (Vol. 11, pp. 223-242): Springer International Publishing.
Mampadi, F., Chen, S. Y., Ghinea, G., & Chen, M.-P. (2011). Design of adaptive hypermedia learning systems: A cognitive style approach. Computers & Education, 56(4), 1003-1011. doi: 10.1016/j.compedu.2010.11.018
Matte, T. D., Hoffman, R. E., Rosenman, K. D., & Stanbury, M. (1990). Surveillance of Occupational Asthma Under the SENSOR Model. Chest, 98(5 Supplement), 173S-178S. doi: 10.1378/chest.98.5_Supplement.173S
Millan-Almaraz, J. R., Torres-Pacheco, I., Duarte-Galvan, C., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Romero-Troncoso, R. d. J., & Rivera-Guillen, J. R. (2013). FPGA-based wireless smart sensor for real-time photosynthesis monitoring. Computers and Electronics in Agriculture, 95, 58-69. doi: 10.1016/j.compag.2013.04.009
Miller, A. (1987). Cognitive styles: An integrated model. Educational Psychology, 7(4), 251-268. doi: 10.1080/0144341870070401
Mitchell, T., Chen, S. Y., & Macredie, R. D. (2005). Cognitive Styles and Adaptive Web-based Learning. Psychology of Education Review, 29(1), 34-42.
Mukhopadhyay, S. C., Gupta, G. S., & Huang, R. Y.-M. (2009). Recent Advances in Sensing Technology: Springer Berlin Heidelberg.
Mukhopadhyay, S. C., & Huang, Y.-M. (2008). Sensors: Advancements in Modeling, Design Issues, Fabrication and Practical Applications: Springer Berlin Heidelberg.
Neumann, D. L., & Thomas, P. R. (2009). The relationship between skill level and patterns in cardiac and respiratory activity during golf putting. International Journal of Psychophysiology, 72(3), 276-282. doi: 10.1016/j.ijpsycho.2009.01.001
Ogata, H., Yin, C., & Yano, Y. (2006, 16-17 Nov. 2006). JAMIOLAS: Supporting Japanese Mimicry and Onomatopoeia Learning with Sensors. Paper presented at the 2006 Fourth IEEE International Workshop on Wireless, Mobile and Ubiquitous Technology in Education (WMTE'06).
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions: Oxford university press.
Pask, G. (1976). Styles and strategies of learning. British Journal of Educational Psychology, 46(2), 128-148. doi: 10.1111/j.2044-8279.1976.tb02305.x
Pask, G. (1988). Learning strategies, teaching strategies and conceptual or learning style. In R. R. Schmeck (Ed.), Learning strategies and learning styles (pp. 83-100). New York: Plenum Press.
Piaget, J. (1989). Les relations entre l’intelligence et l’affectivité dans le developpement de l’enfant. In I. B. R. K. Scherer (Ed.), Les Émotions. Textes de base en psychologie (pp. 75-95). Paris: Delachaux et Niestlé.
Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward Machine Emotional Intelligence: Analysis of Affective Physiological State. IEEE Transactions on Pattern Aanlysis and Machine Intelligence, 23(10), 1175-1191.
Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A.-S., McNamara, J. O., & Williams, S. M. (2001). Physiological Changes Associated with Emotion Neuroscience (3rd ed., pp. 687). Sunderland: Sinauer Associates, Inc.
Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco: Morgan Kaufmann Publishers Inc.
Quinlan, J. R. (1996). Improved use of continuous attributes in C4.5. Journal of Articial Inteligence Research, 4, 77-90.
Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimum description length principle. Inf. Comput., 80(3), 227-248. doi: 10.1016/0890-5401(89)90010-2
Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for kids. Paper presented at the Proceedings of the 2005 conference on Interaction design and children, Boulder, Colorado.
Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M. W., Crews, D. J., & Kubitz, K. A. (1990). Hemispheric asymmetry, cardiac response, and performance in elite archers. Research Quarterly for Exercise and Sport, 61, 351-359.
Smolkowski, K., & Gunn, B. (2012). Reliability and validity of the Classroom Observations of Student–Teacher Interactions (COSTI) for kindergarten reading instruction. Early Childhood Research Quarterly, 27(2), 316-328. doi: 10.1016/j.ecresq.2011.09.004
Surjono, H. D., & Maltby, J. R. (2003). Adaptive Educational Hypermedia based on Multiple Student Characteristics. Paper presented at the the Second International Conference on Web-based Learning, Melbourne, Australia.
Takahashi, M., Ishiji, T., & Kawashima, N. (2001). Handmade oxygen and carbon dioxide sensors for monitoring the photosynthesis process as instruction material for science education. Sensors and Actuators B: Chemical, 77(1–2), 237-243. doi: 10.1016/S0925-4005(01)00740-7
Tian, Y., Kanade, T., & Cohn, J. F. (2011). Facial expression recognition Handbook of face recognition (pp. 487-519): Springer.
Towndrow, P. A., Tan, A.-L., Yung, B. H. W., & Cohen, L. (2010). Science Teachers’ Professional Development and Changes in Science Practical Assessment Practices: What are the Issues? [journal article]. Research in Science Education, 40(2), 117-132. doi: 10.1007/s11165-008-9103-z
Vicente, A. d., & Pain, H. (2002). Informing the Detection of the Students’ Motivational State: an Empirical Study. Paper presented at the International Conference on Intelligent Tutoring Systems.
Wang, T.-I., Wang, K.-T., & Huang, Y.-M. (2008). Using a style-based ant colony system for adaptive learning. Expert Systems with Applications, 34(4), 2449-2464. doi: 10.1016/j.eswa.2007.04.014
Wehrle, T., & Kaiser, S. (2000). Emotion and facial expression. In A. Paiva (Ed.), Affective Interactions: Towards a New Generation of Computer Interfaces (pp. 49-63). Geneva, Switzerland: Springer.
Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-Dependent and Field-Independent Cognitive Styles and Their Educational Implications. Review of Educational Research, 47(1), 1-64.
Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., & Picard, R. W. (2009). Affect-aware tutors: recognising and responding to student affect. International Journal of Learning Technology, 4(3/4), 129-164. doi: 10.1504/IJLT.2009.028804
Woolf, B. P., Arroyo, I., Cooper, D., Burleson, W., & Muldner, K. (2010). Affective Tutors: Automatic Detection of and Response to Student Emotion. In R. Nkambou, J. Bourdeau & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring Systems (pp. 207-227). Berlin, Heidelberg: Springer Berlin Heidelberg.
Wu, C.-H., Huang, Y.-M., & Hwang, J.-P. (In press). Review of Affective Computing in Education/Learning: Trends and Challenges. British Journal of Educational Technology. doi: 10.1111/bjet.12324
Wu, T.-T., Hwang, J.-P., Huang, Y.-M., Tan, Q., & Mukhopadhyay, S. (2012). Using a Sensor-Assisted Model for Learning Retention in an e-Book Reading Environment. Paper presented at the International Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International, Graz, Austria.
Zhang, W., Zhang, Y., Yang, X., & Xu, W. (2012). A class of on-line portfolio selection algorithms based on linear learning. Applied Mathematics and Computation, 218(24), 11832-11841. doi: 10.1016/j.amc.2012.05.041
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw