進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2207201519420900
論文名稱(中文) 基於GPS室外環境多移動機器人階層式隊形控制之設計與實現
論文名稱(英文) Design and Implementation of Hierarchical Formation Control for GPS-Based Multiple Mobile Robots in Outdoor Environment
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 103
學期 2
出版年 104
研究生(中文) 楊承翰
研究生(英文) Cheng-Han Yang
學號 N96991534
學位類別 碩士
語文別 英文
論文頁數 66頁
口試委員 指導教授-廖德祿
口試委員-顏錦柱
口試委員-簡尊彝
中文關鍵字 隊型  跟隨領導者法  無線通訊  避障  全球定位系統  路徑規劃  履帶式機器人 
英文關鍵字 formation  leader-following  wireless communication  avoidance  GPS  path plan  track robot 
學科別分類
中文摘要 數十年來,自主性機器人的研究一直被廣泛的討論。藉由提供導航全球地位系統或是室內定位系統,可以知道機器人的位置資訊進而達到某些任務而自主性的移動。分散式機器人被負責各種不同的任務到達指定的區域來獲得更高的工作效率,這也使得多機器人系統廣泛的被討論。而目前機器人的排隊理論是熱門的討論主題之一,可以利用在危險區域人類無法抵達的地方,進而修復設備或是節點,避免人為的傷害,由階層式機器人代替人們完成任務。
本論文中所建立的多機器人系統實現整個機器人能夠維持特地的隊形和避開障礙物的功能並且前往指定的目的地,同時以變換隊形來克服各種障礙物的限制。多機器人用跟隨領導者法的概念,將群體分成領導者以及跟隨者進而組成階層式隊形以達到良好的控制並且指派任務。然而,在實現多機器人隊形控制系統當中存在的一些問題,例如:如何取得機器人之間的距離和角度或是讓機器人彼此之間交換位置訊息,來達到隊形位置的控制。以上都是本論文設法要去解決的主要問題。
本論文結合全球定位系統(Global Positioning System)且使用履帶式機器人克服地形障礙,並能在室外環境中認知自身位置,並利用無線通訊(ZigBee)的技術建立多移動機器人之間的網路結構以達到溝通與協調的目的,透過地圖(maps)達到室外路經規劃,並跟隨領導者機器人到達目的地同時避開障礙物。
論文的最後會討論硬體的實現結果和多移動機器人在實際的室外環境下運動的軌跡圖。

英文摘要 The research of autonomous robot has been widely discussed for many decades. As we known, the location information of the robot and thus achieve certain tasks and autonomy movement can be obtained by providing the outdoor navigation global position system, or indoor positioning system. Distributed robot was responsible for a variety of tasks, going to the specified area to achieve higher efficiency, which also makes a wide range of multi-robot systems are discussed. And the current robot formation theory is one of the hottest topics, and it can be used in hazardous areas where humans can’t reach, and then repair equipment or spots. Staged robots will help human to complete the task in order to avoid human injury.
Multi-robot system which was discussed in this thesis is to realize the entire robot can maintain specially formation and the function of avoiding obstacles; going to the specified destination and to transform formation to overcome the limitations of the various obstacles. The concept of multi-robot follows the leader with law, and the group is divided into leaders and followers in turns; composed of hierarchical formation in order to achieve good control and assignments. However, in the realization among some of the issues of multi-robot formation control systems exist, such as: how to get the distance and angle between the robot and robot exchange position information with each other. To achieve the formation position of control, these are the main issues in this paper trying to overcome.
The Hierarchical Formation system of robots is combined with the Global Positioning System (GPS), and control robots to overcome the terrain obstacle, make the robots to percept its own position at the outdoor environment. Further, the system uses the wireless communication technology (ZigBee) to set up the multiple robots communication and coordination purposes and to achieve the outdoor path planning through the maps, and to follow the leader robot to avoiding the obstacles.
The hardware implementations are provided to verify the effectiveness of our design.
論文目次 摘要 I
Abstract III
誌謝 V
Contents VI
List of Figures VIII
List of Tables X
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation and Objectives 2
1.3 Thesis Organization 3
CHAPTER 2 FUNDAMENTAL BACKGROUND 5
2.1 Formation Control Method 5
2.1.1 Behavior-Based Method 5
2.1.2 Virtual Structure 7
2.1.3 Leader-Follower 8
2.2 Obstacle Avoidance 10
2.2.1 Artificial Potential Field (APF) 10
2.2.2 Curvature-Velocity Method 11
2.3 Wireless Communication Technologies 13
2.3.1 Overview of Wireless Communication Technologies 13
2.3.2 Mesh Network Structure - Module – ZigBee 17
2.4 Outdoor Positioning 21
2.4.1 WGS84 Coordinate System and NMEA Format 21
2.4.1.1 WGS84 Coordinate System 21
2.4.1.2 NENA Format 22
2.4.2 Maps 23
2.4.3 Distance 24
2.4.4 Geographic Information Systems 25
CHAPTER 3 SYSTEM DESIGN 27
3.1 System Structure 27
3.2 Multi-Robot System 29
3.2.1 Formation Control 30
3.2.1.1 Hierarchical Formation 30
3.2.1.2 Formation Algorithm 33
3.2.2 Trajectory Tracking 39
3.2.3 Obstacle Avoidance 41
3.3 Outdoor Positioning System 47
3.3.1 Navigation 47
3.3.2 Haversine Formula 47
3.4 Wireless Communication System 49
CHAPTER 4 HAREWARE IMPLEMENTATION 51
4.1 Hardware Implementation 51
4.1.1 Mobile Robots System 52
4.1.2 Outdoor Positioning System 54
4.1.3 Wireless Communication System 56
4.2 System Function Verification and Result Analysis 57
4.2.1 Outdoor Global Positioning System 57
4.2.2 Wireless Communication System 58
4.2.3 Multi-Robot Formation Control System 59
CHAPTER 5 CONCLUSIONS AND FUTUREWORK 62
Reference 65
參考文獻 [1]D. Niculescu, “Positioning in Ad Hoc Sensor Networks,” IEEE Network, vol. 18(4), pp.24-29, 2004.
[2]D.K.P. Tan, H. Sun, Y. Lu, M. Lesturgie and H.L. Chan, “Passive Radar Using Global System for Mobile Communication Signal,” IEE Proceedings of Radar, Sonar and Navigation, vol. 152(3), pp.116-123, 2005.
[3]D.M. Stipanović, P.F. Hokayem, M.W. Spong, D.D. Šiljak, “Cooperative Avoidance Control for Multiagent Systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 129(5), pp.699-707, 2007.
[4]E. Rimon, D.E. Koditschek, “Exact Robot Navigation Using Artificial Potential Functions,” IEEE Transactions on Robotics and Automation, vol. 8(15), pp.501-518, 1992.
[5]J. Haartsen,“BLUETOOTH—The Universal Radio Interface for Ad Hoc, Wireless Connectivity,” Ericsson Review, No. 3, pp.110-117,1998.
[6]J.R.T. Lawton, R.W. Beard, B.J. Young, “A Decentralized Approach to Formation Maneuvers,” IEEE Transactions on Robotics and Automation, vol.19(6), pp.933-941, 2003.
[7]M.L. Lewis, K.H. Tan, “High Precision Formation Control of Mobile Robots Using Virtual Structures,” Autonomous Robots, vol. 4(4), pp.387-403, 1997.
[8]T. Balch, R.C. Arkin, “Behavior-Based Formation Control for Multirobot Teams,” IEEE Transactions on Robotics and Automation, vol. 14(6), pp.926-939, 1998.
[9]O. khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” 1985 IEEE International Conference on Robotics and Automation, pp.500-505, 1985.
[10]P. Baronti, P. Pillai, V.W.C. Chook, S. Chessa, A. Gotta, Y.F. Hu, “Wireless Sensor Networks A Survey on The State of The Art and The 802.15.4 and Zigbee Standards,” Computer Communications, vol. 30, pp. 1655-1695, 2007.
[11]R. Simmon, “The Curvature-Velocity Method for Local Obstacle Avoidance,” 1996 IEEE International Conference on Robotics and Automation, vol.4, pp.3375-3382, 1996.
[12]R. Peng, M.L. Sichitiu, “Angle of Arrival Localization for Wireless Sensor Networks,” 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, pp.374-382, 2006.
[13]S. Mastellone, D.M. Stipanovi´c, C.R. Graunke, K.A. Intlekofer, M.W. Spong, “Formation Control and Collision Avoidance for Multiagent Non-holonomic System,” The International Journal of Robotics Research, vol. 27, pp.107-126, 2008.
[14]J.Y. Shao, G.M. Xie, J.Z. Yu, L. Wong, “Leader-following Formation Control of Multiple Mobile Robots,” 2005 IEEE International Symposium on Intelligent Control & 13th Mediterranean Conference on Control and Automation, pp.808-313, 2005.
[15]T.H. Huang, “Coordination and Fault Tolerance Control of Hierarchical Formation for Mobile Robots,” National Cheng Kung University Press, 2010.
[16]W. Lehr, L.W. McKnight, “Wireless Internet Access 3G vs. WiFi,” Telecommunications Policy, vol. 27, pp. 351-370, 2003.
[17]W.Z. Li, “Implementation of Real-Time Positioning and Optimal Path Planning for a Navigation System Based on IEEE 802.11 WLAN,” National Cheng Kung University Press, 2012.
[18]Z.Y. Wang, D.B. Gu, “Distributed Leader-follower flocking control,” Asian Journal of Control, vol. 11(4), pp.396-406, 2009.
[19]Charles D. Ghilani, Paul R. Wolf “Elementary Surveying,” Pearson Education Limited, Edinburgh Gate, Horlow. 2011.
[20]Guochang Xu, “GPS Theory, Algorithms and Applications” Springer. 2003.
[21]The law of haversines http://en.wikipedia.org/wiki/Haversine_formula
[22]Topologies of zigbee introduction http://xbee.wikispaces.com/MESH
[23]Yuan-Ting Hsu, “Design and Implementation of Hierarchical Formation Control for Multiple Robots in Indoor Environment,” National Cheng Kung University Press, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw