進階搜尋


下載電子全文  
系統識別號 U0026-2207201516425600
論文名稱(中文) Sn1-xBixS與Sn1-xInxS液相合成,光學能隙和霍爾效應研究
論文名稱(英文) Solution-phase synthesis, optical bandgap, and Hall effect of Sn1-xBixS and Sn1-xInxS
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 黃昱凱
研究生(英文) Yu-Kai Huang
學號 N56021315
學位類別 碩士
語文別 中文
論文頁數 95頁
口試委員 指導教授-林文台
共同指導教授-蔡文達
口試委員-朱聖緣
口試委員-方炎坤
口試委員-李明逵
中文關鍵字 摻雜Bi的SnS奈米晶  太陽能材料  電性  光學能隙 
英文關鍵字 Bi-doped SnS nanocrystals  solar energy materials  electrical properties  optical bandgap 
學科別分類
中文摘要 本研究以高壓釜在170℃合成摻雜Bi的單一SnS相奈米晶,並探討其電性及光學性質。Bi於SnS晶體中的固溶度約為6 at%。SnS在Bi濃度低於4 at%時仍為p型,當濃度達6 at%時便轉換為n型。隨著SnS中Bi摻雜濃度的上升,能隙值由1.30 eV增加至1.40 eV。目前的研究顯示,有潛力製造具能隙調控的SnS:Bi之p-n同質接面,使其應用在太陽能電池。Sn1-xInxS試片以高壓釜在190℃持溫24小時合成,XRD和TEM分析顯示In並不能進入SnS的晶格內,且有SnS及SnS2兩種相生成。
英文摘要 The electrical and optical properties of Bi-doped SnS nanocrystals with single phase synthesized in an autoclave at 170℃ were explored. The substitution solubility of Bi in SnS is about 6 at%. The samples with the Bi concentration below 4 at% remain p-type, while those with the Bi concentration at 6 at% convert to the n-type nature. The bandgap of Bi-doped SnS increases from 1.30 to 1.40 eV with increasing the Bi concentration from 0 to 6 at%. The present study reveals that it may be promising to fabricate the SnS/SnS:Bi p-n homojunction with the tunable bandgap for applications in solar cell devices. The Sn1-xInxS samples were synthesized in an autoclave at 190℃for 24 h. XRD and TEM analyses for the Sn1-xInxS samples showed that In can not incorporate into the SnS lattice and two phases, i.e., SnS and SnS2 are present.
論文目次 目錄
摘要 I
Extended Abstract II
致謝 VIII
目錄 IX
圖目錄 XI
第一章 引言 1
第二章 光電基礎理論與文獻回顧 3
2.1 基本光電原理 3
2.1.1 光傳導效應(Photoconductive effect) 3
2.1.2 光伏效應(Photovoltaic effect)[4] 3
2.2 太陽能材料介紹 4
2.2.1 太陽能材料物理特性需求 4
2.2.2 太陽能材料分類 4
2.3 可調控能隙材料 7
2.4 SnS奈米晶合成及特性 10
2.4.1 SnS之合成 10
2.4.2 SnS之特性 11
2.5 SnS藉由控制晶粒尺寸調控SnS能隙 11
2.6 藉由元素摻雜調控SnS能隙 13
2.7 研究動機 15
第三章 實驗步驟與方法 17
3.1 水熱法在高壓釜(autoclave)合成Sn1-xBixS粉末 17
3.2 水熱法在高壓釜(autoclave)合成Sn1-xInxS粉末 18
3.3 材料特性分析 18
3.3.1 X光繞射儀(X-ray Diffractometer)[59] 18
3.3.2 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) [59.60] 20
3.3.3 穿透式電子顯微鏡(Transmission Electron Microscope) [59.60] 21
3.3.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS) [59] 23
3.3.5 紫外/可見光(UV-vis)光譜儀[61-64] 24
3.3.6 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis,ESCA)[66] 25
3.3.7霍爾效應分析儀 (Hall Effect Analyzer ) 27
第四章 結果與討論 29
4.1 SnS與Sn1-xBixS奈米晶 29
4.1.1 水熱法在高壓釜(autoclave)製備 SnS及Sn1-xBixS奈米晶 29
4.1.2 SnS及Sn1-xBixS奈米晶之微結構 31
4.1.3 SnS及Sn1-xBixS奈米晶之光學能隙 32
4.1.4 SnS及Sn1-xBixS奈米晶之霍爾效應量測 33
4.2 SnS與Sn1-xInxS奈米晶 34
4.2.1 水熱法在高壓釜(autoclave)製備Sn1-xInxS奈米晶 34
4.2.2 Sn1-xInxS奈米晶之微結構 35
4.2.3 SnS及Sn1-xInxS奈米晶之光學能隙 36
4.2.4 SnS及Sn1-xInxS奈米晶之霍爾效應量測 37
第五章 結論 38
參考文獻 40
附錄 90
JCPDS Cards No. 00-039-0354 (SnS) 90
JCPDS Cards No. 00-065-2435 (Bi2S3) 91
JCPDS Cards No. 00-021-1231 (SnS2) 92
SnS(170℃、36hr) Hall Measurement,試片電流0.1mA 93
Sn0.96Bi0.04S (170℃、36hr) Hall Measurement,試片電流10uA 93
Sn0.92Bi0.08S (170℃、36hr) Hall Measurement,試片電流10uA 94
Sn0.88Bi0.12S (170℃、36hr) Hall Measurement,試片電流9uA 94
Sn0.94In0.06S (190℃、24hr) Hall Measurement,試片電流0.1mA 95
Sn0.88In0.12S (190℃、24hr) Hall Measurement,試片電流0.1mA 95
參考文獻 參考文獻
[1]. R.W. Zhang, M.X. Wang, X. Yang, and Y. Wang, "Preliminary Estimation of Emission of HFCs, PFCs and SF6 from China in 1995", Environ. Res., vol. 5, pp. 175-179, 2000.
[2]. 莊嘉琛, 太陽能工程--太陽能電池篇 台北:全華圖書股份有限公司, 2008.
[3]. D. R. E. Adams. W. G, "The Action of Light on Selenium", Phil. Trans. R. Soc. Lond., vol. 167, pp. 313-349, 1877.
[4]. C. T. Dervos, P. D. Skafidas, J. A. Mergos, and P. Vassiliou, "p-n junction photocurrent modelling evaluation under optical and electrical excitation", Sensors, vol. 4, pp. 58-70, 2004.
[5]. R. T. Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. L. Clement, "Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell", CR. Chim., vol. 9, pp. 717-729, 2006.
[6]. S. Y. Chen, X. G. Gong, A. Walsh, and S. H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights", Appl. Phys. Lett., vol. 94, pp. 041903, 2009.
[7]. H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, "Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: experimental and first-principles calculations", Cryst. Eng. Comm., vol. 13, pp. 2222-2226, 2011.
[8]. J. Meiss, K. Leo, M. K. Riede, C. Uhrich, W. M. Gnehr, and S. Sonntag, "Efficient semitransparent small-molecule organic solar cells", Appl. Phys. Lett., vol. 95, pp. 213306, 2009.
[9]. M. Grätzel, B. Regan, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, vol. 353, pp. 737 – 740, 1991.
[10]. A. Kay,M. Gratzel, " Artificial Photosynthesis. 1. Photosensitization of Ti02 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins", J. Phys. Chem., vol. 97, pp. 6272-6277, 1993.
[11]. J. N. Clifford, E. Palomares, K. Nazeeruddin, R. Thampi, M. Gratzel, and J. R. Durrant, "Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films", J. Am. Chem. Soc., vol. 126, pp. 5670-5671, 2004.
[12]. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, and R. Menner, "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%", Prog. Photovolt. Res. Appl., vol. 19, pp. 894-897, 2011.
[13]. V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, et al., "Concentrator PV modules and solar cells for TPV systems", Sol Energ. Mat. Sol. C, vol. 84, pp. 3-17, 2004.
[14]. A. Devos, "Detailed balance limit of the efficiency of tandem solar-cells", J. Phys. D. Appl. Phys., vol. 13, pp. 839-846, 1980.
[15]. N. V. Yastrebova, "High-efficiency multi-junction solar cells: Current status and future potential," 2007.
[16]. M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, "Multi-junction III-V solar cells: current status and future potential", Sol. Energy, vol. 79, pp. 78-85, 2005.
[17]. E. Barrios-Salgado, M. T. S. Nair, P. K. Nair, and R. A. Zingaro, "Chemically deposited thin films of PbSe as an absorber component in solar cell structure", Thin Solid Films, vol. 519, pp. 7432-7437, 2011.
[18]. M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, "Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model", Nano. Lett., vol. 8, pp. 3904-3910, 2008.
[19]. S. Kitada, E. Kikuchi, A. Ohno, S. Aramaki, and S. Maenosono, "Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells", Solid. State. Commun., vol. 149, pp. 1853-1855, 2009.
[20]. X. F. Wang, W. Z. Lu, Z. K. Luo, and F. Wang, "Microwave Assisted Preparation and Characterization of Monodispersed PbSe Nanoparticles in Solar Cell", Rare. Metal. Mat. Eng., vol. 39, pp. 103-106, 2010.
[21]. S. Coe-Sullivan, W. K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices", Org. Electron., vol. 4, pp. 123-130, 2003.
[22]. W. J. Baumgardner, J. J. Choi, Y. F. Lim, and T. Hanrath, "SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry," J. Am. Chem. Soc., vol. 132, pp. 9519-9521, 2010.
[23]. C. Yang, B. Zhou,S. Miao, C. Yang, B. Cai, W. Zhang, and X. Xu, "Cu2Ge(S3−xSex) Colloidal Nanocrystals: Synthesis, Characterization,and Composition-Dependent Band Gap Engineering", J. Am. Chem. Soc., 135, pp. 5958−5961, 2013.
[24]. J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, and S. K. Tripathi, "Preperation and Characterization of SnSe nanocrystalline thin films", J. Optoelectron. Adv. M., vol. 7, pp. 2085–2094, 2005
[25]. X. Yu, R. J. Zhang, Z. J. Xu, D. X. Zhang, H. B. Zhao, Y. X. Zheng, and L. Y. Chen, "Optical constants and band gap expansion of size controlled silicon nanocrystals embedded in SiO2 matrix", J. Non-Cryst. Solids, vol. 357, pp. 3524–3527, 2011
[26]. S. Coe-Sullivan, W. K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices", Org. Electron., vol. 4, pp. 123-130, 2003.
[27]. X. Zhong, Y. Feng, W. Knoll, and M. Han, "Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width", J. Am. Chem. Soc., vol. 125, pp. 13559-13563, 2003.
[28]. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach", Nat. Mater., vol. 6, pp. 951-956, 2007.
[29]. C. H. Hu, M. H. Chiang, M. S. Hsieh, W. T. Lin, Y. S. Fub, and T. F. Guoc, "Phase formation, morphology evolution and tunable bandgap of Sn1−xSbxSe nanocrystals", Cryst. Eng. Comm., vol. 16, pp. 1786-1792, 2014
[30]. H. Peng, L. Jiang, J. Huang, and G. Li, "Synthesis of morphologically controlled tin sulfide nanostructures," J. Nanopart. Res., vol. 9, pp. 1163-1166, 2007
[31]. S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande, "Synthesis and characterization of different morphological SnS nanomaterials", Adv. Nat. Sci., vol. 5, pp. 045010 2014
[32]. I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C. Jumas, "Electronic structure of tin monochalcogenides from SnO to SnTe", Phys. Rev. B, vol. 58, pp. 1896-1906, 1998.
[33]. M. M. Haluk ŞAFAK, Ő. Faruk YŰKSEL, "Dispersion Analysis of SnS and SnSe," Turk. J. Phys., vol. 26, pp. 341-347, 2002.
[34]. M. Parenteau, C. Carlone, "Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors", Phys. Rev. B, Condens. Matter, vol. 41, pp. 5227–5234, 1990.
[35]. N. K, Reddy, K. Ramesh, R. Ganesan, K.T. Ramakrishna Reddy, K.R. Gunasekhar, and E.S.R. Gopal, "Synthesis and characterization of co-evaporated tin sulphide thin films", Appl. Phys. A, vol. 83 , pp. 133–138, 2006.
[36]. G. Valiukonis, D. A. Guseinova, G. Keivaitb, and A. Sileika, "Optical spectra and energy band structure of layer-type AIVBVI compounds", Phys. Status. Solidi. B, vol. 135, pp. 299-307, 1986.
[37]. M. T. S Nair, P. K. Nail, "Simplified chemical deposition technique for good quality SnS thin films," Semicond. Sci. Technol., vol. 6, pp. 132-134, 1991.
[38]. A. Tanus̃evski, D. Poelman, "Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation", Sol. Energ. Mat. Sol. C, vol. 80, pp. 297–303, 2003.
[39]. K. T. R. Reddy, N. K. Reddy, and R.W. Miles, "Photovoltaic properties of SnS-based solar cells", Sol. Energ. Mat. Sol. C, vol. 90, pp. 3041-3046, 2006.
[40]. P. Sinsermsuksakul, K. Hartman, S. B. Kim, J. Heo, L. Sun, H. H. Park, R. Chakraborty, T. Buonassisi, and R.G. Gordon, "Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer", Appl. Phys. Lett., vol. 102, pp. 053901, 2013.
[41]. R. W. Miles, O. E. Ogah, G. Zoppi, and I. Forbes, "Thermally evaporated thin films of SnS for application in solar cell devices", Thin Solid Films, vol. 517, pp. 4702–4705, 2009.
[42]. M. Devika, N. K. Reddy, K. Ramesh, K. R. Gunasekhar, E. S. R. Gopal, and K. T. R. Reddy, "Influence of annealing on physical properties of evaporated SnS films", Semicond. Sci. technol., vol. 21, pp. 1125-1131, 2006.
[43]. Y. Xu, N. Al-Salim, C. W. Bumby, and R. D. Tilley, "Synthesis of SnS Quantum Dots", J. Am. Chem. Soc., vol. 131, pp. 15990-15991, 2009.
[44]. Z. Deng, D. Han, and Y. Liu, "Colloidal synthesis of metastable zinc-blende IV–VI SnS nanocrystals with tunable sizes", Nanoscale, vol. 3, pp. 4346-4351, 2011.
[45]. Priyal Jain, P. Arun, "Influence of Grain Size on the Band-gap of Annealed SnS Thin Films", Cond. Mat., vol. 6, pp. 2830-2849, 2012
[46]. M. Devika, N. K. Reddy, K. Ramesh, K. R. Gunasekhar, S. R. Gopal, and K. T. R. Reddy, "Low Resistive Micrometer-Thick SnS:Ag Films for Optoelectronic Applications", J. Electrochem. Soc., vol. 153, pp. 727-733, 2006.
[47]. S. Zhang, S. Cheng, "Thermally evaporated SnS:Cu thin films for solar cells", Micro. Nano. Lett., vol. 6, pp. 559-562, 2011.
[48]. A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, "Effect of copper doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition", J. Mater. Sci., vol. 47, pp. 1365-1371, 2012.
[49]. P. Pramanik, P. K. Basu, and S. Biswas, "Preparation and characterization of chemically deposited tin(II) sulphide thin films", Thin Solid Films, vol. 150, pp. 269–276, 1987.
[50]. K. S. Kumar, C. Manoharana, S. Dhanapandiana, and A. Gowri Manohari, T. Mahalingamb, "Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis", Optik, vol. 125, pp.3996–4000, 2014.
[51]. H. Y. He, J. Fei, and J. Lu, "Optical and electrical properties of pure and Sn4+-doped n-SnS films deposited by chemical bath deposition", Mat. Sci. Semicon. Proc., vol. 24, pp. 95-99, 2014.
[52]. A. J. Biacchi , D. D. Vaughn , and R. E. Schaak, "Synthesis and Crystallographic Analysis of Shape-Controlled SnS Nanocrystal Photocatalysts: Evidence for a Pseudotetragonal Structural Modification", J. Am. Chem., vol. 135, pp. 11634-11644, 2013.
[53]. D. C. Pan, X. L. Wang, Z. H. Zhou, W. Chen, C. L. Xu, and Y. F. Lu, "Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps", Chem. Mater., vol. 21, pp. 2489-2493, 2009.
[54]. H. Yoon, J. E. Granata, P. Hebert, R. R. King, C. M. Fetzer, P. C. Colter, et al, "Recent advances in high-efficiency III-V multi-junction solar cells for space applications: Ultra triple junction qualification", Prog. Photovoltaics., vol. 13, pp. 133-139, 2005.
[55]. M. Sugiyama, K.T.R. Reddy, N. Revathi, Y. Shimamoto, and Y. Murata, "Band offset of SnS solar cell structure measured by X-ray photoelectron spectroscopy", Thin solid films. vol. 519, pp. 7429-7431, 2011.
[56]. P. Sinsermsuksakul, R. Chakraborty, S. B. Kim, S. M. Heald, T. Buonassisi, and R. G. Gordon, "Antimony-Doped Tin(II) Sulfide Thin Films", Chem. Mater., vol.24, pp. 4556-4562, 2012.
[57]. A. Dussan, F. Mesa, and G. Gordillo, "Effect of substitution of Sn for Bi on structural and electrical transport properties of SnS thin films", J. Mater. Sci., vol. 45, pp. 2403-2407, 2010.
[58]. A. G. Manohari, S. Dhanapandian, C. Manoharan, K. Santhosh Kumar, and T. Mahalingam, "Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis", Mat. Sci. Semicon. Proc., vol. 17, pp.138–142, 2014.
[59]. 汪建民等人, "材料分析", 中國材料科學學會, 1998.
[60]. 陳力俊等人, "材料電子顯微鏡學", 儀器科技研究中心, 1990.
[61]. R. L. W. a. R. P. Ley, "Optical Properties of Indium Oxide", Jpn. J. Appl. Phys., vol. 37, pp. 1-466, 1966.
[62]. Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, "Optical spectroscopy of Eu3+ doped ZnO nanocrystals", J. Phys. Chem. C, vol. 112, pp. 686-694, 2008.
[63]. W. N. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, "Spectroscopy in heterogeneous catalysis", ACADEIC PRESS INC, New York, pp. 86-129, 1979.
[64]. A. Hagfeldtt, M. Gratzel, "Light-Induced Redox Reactions in Nanocrystalline Systems", J. Cryst. Growth, vol. 268, pp. 596-601, 2004.
[65]. D. D. Vaughn, R. J. Patel, M. A. Hickner, and R. E. Schaak, "Single-Crystal Colloidal Nanosheets of GeS and GeSe", J. Am. Chem. Soc., vol. 132, pp. 15170-15172, 2010.
[66]. J. C. Vickerman, and I. S. Gilmore, "Surface analysis: the principal techniques", Wiley Online Library, 2009.
[67]. L. J. van der Pauw, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape", Philips Res. Repts., vol. 13, pp. 1-9, 1958
[68]. E. H. Hall, "On a New Action of the Magnet on Electric Currents", Am. J. Math., vol. 2, pp. 287-292, 1879.
[69]. J. Volger, "Note on the Hall potential across an inhomogeneous conductor", Phys. Rev., vol. 79, pp. 1023-1024, 1950.
[70]. A. Ettema and C. Haas, "An x-ray photoemission spectroscopy study of interlayer charge-transfer in some misfit layer compounds", J. Phys. Condens. Mat., vol. 5, pp. 3817-3826, 1993.
[71]. Y. Liua, D. Houa, and G. Wang, "Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution", Chem. Phys. Lett., vol. 379, pp. 67-73, 2003.
[72]. Y. Zhao, Y. Xie, J. S Jie, C. Y. Wub, and S. Yana, "Tectonic arrangement of Bi2S3nanocrystals into 2D networks", J. Mater. Chem., vol. 19, pp. 3378-3383, 2009.
[73]. M.P. Deshpandea, P. N. Sakariyaa, S. V. Bhatta, N. Garga, K. Patela, and S. H. Chakia, "Characterization of Bi2S3 nanorods prepared at room temperature", Mat. Sci. Semicon. Proc., vol. 21, pp. 180-185, 2014.
[74]. J. F. Moulder, P. E. Sobol, and K. D. Bomben, "Handbook of X Ray Photoelectron Spectroscopy," Perkin-Elmer Corp, 1992.
[75]. V. P. Zakaznova-Herzog, S. L. Harmer, H. W. Nesbitt, G. M. Bancroft, R. Flemming, and A. R. Pratt, "High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction", Surf. Sci., vol. 600, pp. 348-356, 2006.
[76]. J. A. Dean, "Lange’s Handbook of Chemistry", McGRAW-HILL INC, New York, pp. 4.30-4.34, 1970.
[77]. W. N. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, "Spectroscopy in heterogeneous catalysis", ACADEIC PRESS INC, New York, pp. 86-129, 1979.
[78]. A. Hagfeldt, and M. Gratzel, "Light-Induced Redox Reactions in Nanocrystalline Systems", Chem. Rev., vol. 95, pp. 49-68, 1995.
[79]. F. Ye, and A. Ohmori, "The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings", Surf. Coat. Technol., vol. 160, pp. 62-67, 2002.
[80]. Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, "Optical spectroscopy of Eu3+ doped ZnO nanocrystals", J. Phys. Chem. C, vol. 112, pp. 686-694, 2008.
[81]. D. D. Vaughn, R. J. Patel, M. A. Hickner, and R. E. Schaak, "Single-Crystal Colloidal Nanosheets of GeS and GeSe", J. Am. Chem. Soc., vol. 132, pp. 15170-15172, 2010.
[82]. V. I. Vasyltsiv, Y. I. Rym, and Y. M. Zakharko, "Optical Absorption and Photoconductivity at theBand Edge of β-Ga2-xInxO3", Phys. Status Solidi B, vol. 195, pp. 653-658, 1996.
[83]. A. Kudo, and I. Mikami, "Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution", J. Chem. Soc., vol. 94, pp. 2929-2932, 1998.
[84]. L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, "Electron magnetic resonance and optical properties of Ga2-2xIn2xO3 solid solutions", J. Phys. Chem. Solids, vol. 60, pp. 1755-1762, 1999.
[85]. W. T. Lin, C. Y. Ho, Y. M. Wang, K. H. Wu, and W. Y. Chou, "Tunable growth of (GaxIn1-x)2O3 nanowires by water vapor", J. Phys. Chem. Solids, vol. 73, pp. 948-952, 2012.
[86]. N. S. Yesugade, C. D. Lokhande, and C. H. Bhosale, "Structural and optical properties of electrodeposited Bi2S3, Sb2S3 and As2S3 thin films", Thin solid films, vol. 263, pp. 145-149, 1995.
[87]. D. J. Riley, J. P. Waggett, and K. G. U. Wijayantha, "Colloidal bismuth sulfide nanoparticles: a photoelectrochemical study of the relationship between bandgap and particle size", J. Mater. Chem., vol. 14, pp. 704-708, 2004.
[88]. R. R. Ahire, and R. P. Sharma, "Photoelectrochemical characterization of Bi2S3 thin films deposited by modified chemical bath deposition", Indian J. Eng. Mater. S., vol. 13, pp. 140-144, 2006.
[89]. W. Albers, C. Haas, H. J. Vink, and J. D. Wasscher, "Investigations on SnS", J. Appl. Phys., vol. 32, pp. 2220-2226, 1961.
[90]. R. E. Reed-Hill, and R. Abbaschian, "Physical Metallurgy Principles", PWS Publishing Company, Boston, 1994.
[91]. S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande, "Effect if indium and antimony doping in SnS single crystals", Mater. Res. Bull., vol. 63, pp. 173-180, 2015.
[92]. M. Seal, N. Singh, E. W. McFarland, and J. Baltrusaitis, "Electrochemically Deposited Sb and In Doped Tin Sulfide(SnS) Photoelectrodes", J. Phys. Chem. C, vol. 119, pp. 6471-6480, 2015.
[93]. J. Emsley, "The Elements", 3rd ed., Clarendon Press, Oxford, 1998.
[94]. A. S. Juarez, and A. Ortíz, "Effects of precursor concentration on the optical and electrical properties of SnXSY thin films prepared by plasma-enhanced chemical vapour deposition", Semicond. Sci. Technol., vol. 17, pp. 931-937, 2002.
[95]. C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, and X. Shen, "Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation", Thin Solid Films, vol. 520, pp. 4898-4901, 2012.
[96]. B. Thangaraju, and P. Kaliannan, "Spray pyrolytic deposition and characterization of SnS and SnS2 thin films", J. Phys. D. Appl. Phys., vol. 33, pp. 1054-1059, 2000.
[97]. L. Amalraj, C. Sanjeevirajaa, and M. Jayachandran, "Spray pyrolysised tin disulphide thin film and characterisation", J. Cryst. Growth, vol. 234, pp. 683-689, 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw