進階搜尋


下載電子全文  
系統識別號 U0026-2207201414544700
論文名稱(中文) 酚醛樹脂化學活化製備之多孔性碳材在電雙層電容器之應用
論文名稱(英文) Preparation of Porous Carbons from Chemical Activation of Phenol-Formaldehyde Resins for Electric Double-Layer Capacitors
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 林晏平
研究生(英文) Yan-Ping Lin
學號 N36011196
學位類別 碩士
語文別 中文
論文頁數 115頁
口試委員 口試委員-楊明長
口試委員-許梅娟
指導教授-鄧熙聖
口試委員-孫亦文
口試委員-蔡建成
中文關鍵字 電雙層電容器  電化學電容器  活性碳  酚醛樹脂  化學活化 
英文關鍵字 EDLC  activated carbon  phenol-formaldehyde resins  KOH activation  neutral solution 
學科別分類
中文摘要 本研究利用氫氧化鉀化學活化之酚醛樹脂碳材來製備超級電容器,並探討化學活化條件對碳材結構及電容行為的影響。我們透過前氧化酚醛樹脂的步驟增加其交聯性,除了能提高活化後的碳材產率及孔隙度外,碳材產物上的氧官能基含量也有增加的跡象。在中性硫酸鈉電解液中,酚醛樹脂碳材PFR-140-800的電容值可高達236 F g-1,此高電容值主要是因為碳材的高表面積(2960 m2 g-1)及表面氧官能所能提供部份擬電容所致,此外,前氧化酚醛樹脂在碳材上產生的官能基並不僅限於碳材表面,也出現在深部的孔洞之中,此孔洞內部的氧官能基能改善碳電極的浸潤性(wettability),降低電解質於孔洞內部的質傳阻力(Red),使電解質更容易進入內部的微孔之中,提高表面積的使用率並進一步地提升電容器的能量密度。
  組成對稱性二極式超級電容器,在工作電位1.6 V下,最大比能量可高達21 kW kg-1 ; 在比功率為10 kW kg-1下,比能量可達12 Wh kg-1,且經20000圈的穩定性測試後,電容維持率仍保有92%,表示此酚醛樹脂碳材在超級電容器碳電極材料上的高適用性。
英文摘要 Due to the low ion conductivity, neutral solutions applied in supercapacitors trend to show lower capacitances compared to other aqueous electrolytes, restricting its advantage of higher working voltage. In this work, porous carbons with high porosities prepared from phenol-formaldehyde resins with a sequence step of pre-oxidation followed by chemical activation method were tested in 1 M Na2SO4. The as prepared carbon showed a superior capacitive performance which is comparable to cells working under acidic and base electrolytes.

The pre-oxidation step can reform the resins properties, favors the pore formations during the high temperature activation step, and enhances the containment of oxygen functionalities on carbon products. The oxidized functionalities on carbon surface not only provide parts of pseudocapacitance, but more importantly reform the wettability of inner-pore carbon surface, making electrolyte ions penetrate into inner pores easily and promote the utilization of charge storage surface. As a result, when assembled to symmetric cells, the carbon specimen PFR-140-800 reaches a high capacitance value of 236 F g-1, delivering a high energy density of 21 kW kg-1 with superior stability of 92 % capacitance retention after 20000 cycles of galvanostatic charge-discharge.
論文目次 中文摘要 .......................................... I
英文摘要 ............................................ II
誌 謝 ............................................ VII
本文目錄 ............................................. IX
表目錄 ........................................... XIV
圖目錄 ..................................... XV

本文目錄

第一章 緒論
1-1 超高電容器的介紹 ............................. 1
1-1-1 前言………………………………………………………… 1
1-1-2 超高電容器的發展與應用………………………………… 2
1-2 超高電容器的構成原件 ........................... 5
1-2-1 電化學電容器的電極材料……………………………………5
1-2-2 電化學電容器的電解液種類級隔離膜的選用………………7
1-3 多孔性活性碳的簡介與製備 ..................... 9
1-3-1 碳電極材料的特性…………………………………………9
1-3-2 碳前驅物的影響………………………………………………11
1-3-3 活性碳製造……………………………………………………12
1-3-3-1 碳化………………………………………………………12
1-3-3-2 物理活化…………………………………………………13
1-3-3-3 化學活化…………………………………………………13
1-4 研究動機 ...................................... 14

第二章 文獻回顧與理論說明
2-1 酚醛樹脂的介紹…………………………………………… 16
2-2 碳材的活化理論..................................19
2-2-1 化學活化 ................................... 19
2-2-2 前氧化處理 ................................... 21
2-3 酚醛樹脂碳材運用於超級電容器 ......................... 22
2-3-1 酚醛樹脂的改良 ............................. 22
2-3-2 傳統活化方式的探討 ............................ 24
2-3-3 混合型活化劑與基板的使用 ................... 25
2-4 碳材物性的分析 .................................. 27
2-4-1 吸附基本理論 ............................. 27
2-4-1.1 等溫吸附曲線 ............................ 27
2-4-1.2 BET等溫吸附模式 ......................... 30
2-4-1.3 D-R 等溫吸附模式 ................. 31
2-4-1.4 BJH理論 ......................... 31
2-4-1.5 密度泛函理論 ............................. 33
2-4-2 化學分析電子光譜儀 ........................ 34
2-4-3 掃描式電子顯微鏡 ......................... 35
2-5 電雙層電容器(EDLC) ………..................... 37
2-5-1 電容器簡介 ……….................... 37
2-5-2 平行板電容器 ............................ 38
2-5-3 電容器串聯 .................................. 40
2-5-4 電容器並聯 .................................. 41
2-5-5 二極式及三極式電容器 ....................... 43
2-6 電雙層的概念與結構 ................................. 45
2-6-1 電雙層原理 ............................. 45
2-6-2 Helmholtz電雙層模型 ..................... 45
2-6-3 Stern電雙層模型 ............................. 47
2-6-4 電雙層結構 .................................. 49
2-7 電化學測試方法 ................................... 50
2-7-1 循環伏安法 ................................ 50
2-7-2 電化學充放電 ............................. 52
2-7-3 交流阻抗理論 .............................. 53
2-7-3.1 電阻 ........................ 54
2-7-3.2 電容 ................................ 55
2-7-3.3 電阻電容串聯 ...................... 56
2-7-3.4 電阻電容並聯 ………………………..………………….57


第三章 實驗方法與設備
3-1 藥品、材料與儀器設備 .................... 59
3-1-1 藥品與材料 ............................. 59
3-1-2 儀器與實驗設備 .............................. 60
3-2 酚醛樹脂碳材的製備 ............................ 61
3-2-1 酚甲醛樹脂的製備 ............................. 61
3-2-2 酚醛樹脂的活化 ......................... 63
3-2-3 製備活化酚醛樹脂碳材複合奈米碳管 ............ 65
3-2-4 熱處理PFR-mt步驟 ........................ 65

3-3 樣品鑑定 ....................................... 66
3-3-1 SEM結構分析 ................................. 66
3-3-2 氮氣物裡吸脫附實驗 .......................... 66
3-3-3 XPS元素化學態分析 ........................... 67
3-3-4 四點探針導電度測試 ........................... 67
3-4 電容器組裝及電性測試 ......................... 68
3-4-1 電容器組裝 ........................... 68
3-4-2 循環伏安法 ................................ 69
3-4-3 定電流充放電 ........................... 69
3-4-4 交流阻抗分析 ............................... 69

第四章 結果與討論
4-1 化學活化酚醛樹脂碳材之物理性質分析 ……………....... 70
4-1-1 SEM外觀分析 .............................. 70
4-1-2 氮氣吸脫附結果分析 ......................... 74
4-1-3 XPS分析 ................................... 81
4-1-4 四點探針導電度分析.............................. 85
4-2 酚醛樹脂複合電極材料儲存電荷之行為 .................. 88
4-2-1 循環伏安法測試之分析與討論 ................... 88
4-2-2 三極式循環伏安測試 ........................... 88
4-2-3 二極式循環伏安測試 .......................... 91
4-2-4 定電流充放電分析 ………….............. 93
4-2-5 交流阻抗分析及討論 ....................... 97
4-3 超級電容器電化學行為表現 ......................... 100
4-4 文獻比較 .................................................................................. 103

第五章 結論 ................................. 105

參考文獻 .................................... 107
參考文獻 1. C. K. Chan; R. N. Patel; M. J. O’Connell; B. A. Korgel; Y. Cui; Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano. 4, 1443, 2010
2. Y. Zhou; T. H. Kim; C. S. Jo; J. W. Lee ; C. W. Lee ; S. H, Yoon ; A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries, Chem Commum. 47, 4944, 2011
3. Y. Kumar; G. P. Pandey; S. A. Hashmi; Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with Multiwalled Carbon Nanotubes and Activated Carbon Electrodes, J. Phys. Chem. C 116, 26118-26127, 2012
4. J. J. Yoo; K. Balakrishnan; J. S. Huang; V. Meunier; B. G. Sumpter; A. Srivastava; M. Conway; A. L. M. Reddy; J. Yu; R. Vajtai; P. M. Ajayan; Uitrathin planar graphene supercapacitors, Nano Lett. 11, 1423-1427, 2011
5. K. Kinoshita; Carbon: Electrochemical and physicochemical properties, John Wiley & Sons: New York, 293-387, 1988
6. B. E. Conway; Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic Plenum , New York, 1999.
7. S. Yoon; J. Lee; T. Hyeon; S. M. Oh; Electric double-layer capacitor performance of a new mesoporous carbon. J. Electrochem. Soc, 147, 2507, 2000
8. R. Kötz; M. Carlen; Principles and applications of electrochemical capacitor. Electrochim. Acta, 45, 2483, 2000
9. L. Bonnefoi; P. Simon; J. F. Fauvarque; C. Sarrazin; J. F. Sarrau; A. Dugast; Electrode compositions for carbon power supercapacitors, J. Power Sources, 80, 149, 1999
10. J. P. Zheng; T. R. Jow; High energy and high power density electrochemical capacitors, J. Power Sources, 62, 155, 1996
11. N. E. Tran; S. G. Lambrakos; J. J. Lagowski; Analysis of capacitance of C60, C70, and La@C82, J. Mater. Eng. Perform, 18, 95, 2009
12. T. L. Makarova; B. Sundqvist; P. Scharff; M. E. Gaevski; E. Olsson; V. A. Davydov; A. V. Rakhmanina; L. S. Kashevarova; Electrical properties of two-dimensional fullerene matrices, Carbon, 39, 2203, 2001
13. D. Eder; Carbon nanotube-inorganic hybrids, Chem. Rev., 110, 1348, 2010
14. M. Pumera; Electrochemistry of grapheme : new horizons for sensing and energy storage, Chem. Rec., 9, 211, 2009
15. D. Li; R.B. Kaner; Material science : Graphene-based materials, Science, 320, 1170, 2008
16. Y. Wang; Z.Q. Shi; Y. Huang; Y.F. Ma; C.Y. Wang; M.M. Chen;
Y.S. Chen; Supercapacitor devices based on graphene materials, J. Phys. Chem. C, 113, 13103, 2009
17. M.J. Allen; V.C. Tung; R.B. Kaner; Honeycomb carbon : a review of grapheme, Chem. Rev., 110,132, 2010
18. A.B. Fuertes; S. Alvarez; Graphitic mesoporous carbons synthesized through mesostructured silica templates, Carbon, 42, 3049,2004
19. P.Simon; Y.Gogorsi; Capacitive Energy Storage in Nanostructured
Carbon_Electrolyte Systems. Accounts of chemical research,
46 , 1094, 2013,
20. H. F. Stoeckli; Microporous carbons and their characterizations: the present state of the art, Carbon, 28, 1, 1990
21. J. R. Miller; P. Simon; Electrochemical capacitors for energy management, Science, 321, 651, 2008
22. Z. Zheng; Q. Gao; Hierarchical porous carbons prepared by an easy one –step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitor, Journal of Power Source ,196, 1615, 2011
23. Y. Lv; F. Zhang; Y. Dou; Y. Zhai; J. Wang; H. Liu; Y. Xia; B.
Tu; D. Zhao A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J. Mater. Chem., 22, 93, 2012
24. A. Szczurek; K. jurewicz; G. A. Labat; V. Fierro; A. Pizzi; A.
Celzard; Structure and electrochemical capacitance of carbon cryogels derived from phenol-formaldehyde resins, Carbon, 48, 3874, 2010
25. H. Teng; Y. J. Chang; C. T. Hsieh; Performance of electric double-layer capacitors usong carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon, 39, 1981, 2001
26. C. Lei; N. Amini; F. Markoulidsis; P. Wilson; S. Tennison; C.
Lekakou; Activated carbon from phenolic resin with controlled mesoprorsity for an electric double layer capacitor (EDLC), J. Mater. Chem. A, 1, 6037, 2013
27. L. Zhang; X. Yang; F. Zhang; G. Long; T. Zhang; K. Leng; Y.
Zhang; Y. Huang; Y. Ma; M. Zhang; Y. Chen; Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials, J. Am. Chem. Soc.,135, 5921, 2013
28. H. Chen; F. Wang; S. Tong; S. Guo; X. Pan; Porous carbon with tailed pore size for electric double layer capacitors, Applied Surface Science, 258, 6097, 2012
29. X. Zhang; J. Wang; Z. Yu; R. Wang; H. Xie; Highly mesoprous carbon with high capacitance from carbonization of phenol-formaldehyde resin, Materials Letters, 63, 2523, 2009
30. R. Xue; J. Yan; X. Liu; Y. Tian; B. Yi; Effect of activation on the carbon fibers from phenol-formaldehyde resins for electrochemical supercapacitor, J. Appl. Electrochem., 41, 1357, 2011
31. A. Gardziella; L.A. Pilato; A. Knop; Phenolic Resins: Chemistry,
Applications, Standardization, Safety and Ecology 2nd edition,
Springer, 2000
32. P, Ehrburger; A. Addoun; F. Addoun; J. B. Donnet; Carbonization of coals in presence of alkaline hydroxides and carbonated: formation of activated carbons, Fuel, 65, 1447, 1986
33. Y. Yamashita; K. Ouchi; Influence of alkali on the carbonization process-I :Carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH, Carbon, 20, 41, 1982
34. M. J. Illán-Gómez; A. García-García; C. Salinas-Martínez de Lecea; A. Linares-SolanoL; Activation carbons from Spanish coals. 2. Chemical activation, Energy& Fuels, 10, 1108, 1996
35. J. Romanos; M. Beckner; T. Rash; L. Firlej; B. Kuchta; P. Yu; G.
Suppes; C. Wexler; P. Pfeifer; Nanospace engineering of KOH
activated carbon, Nanotechnology, 23, 015401, 2012
36. H. Teng; J. A. Ho; Y. F. Hsu; C. T. Hsieh; Preparation of activated carbons from Bituminous coals with CO2 activation-1. Effect of oxygen content in raw coals, Ind. Eng. Chem. Res., 35, 4043, 1996
37. T. Alvarez; A. B. Fuertes; J. J. Pis; J. B. Parra; J. Pajares; R.
Menendez; Influence of coal oxidation on the structure of Char. Fuel, 73, 1358, 1994
38. C. C. Lin; H. Teng; Preparation of Porous Carbons from Phenol- Formaldehyde Resins of Different Compositions, National Cheng Kung University, Taiwan, 2001
39. A. Szczurek; K. jurewicz; G. A. Labat; V. Fierro; A. Pizzi; A.
Celzard; Structure and electrochemical capacitance of carbon cryogels derived from phenol-formaldehyde resins. Carbon, 48, 3874, 2010
40. T. Horikawa; K. Ogawa; K. Mizuno; J. Hayashi; K. Muroyama; Preparation and characterization of the carbonized materials of phenol-formaldehyde resin with addition of various organic substances, Carbon, 41, 465, 2003
41. F. Y. Yuan; H. B. Zhang; X. Li; H. L. Ma; X. Z. Li; Z. Z. Yu; In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon, 68, 653, 2014
42. L. Liu; J. Yang; Q. Meng; The preparation and characterization graphene-cross-linked phenol-formaldehyde hybrid carbon xerogels, J Sol-Gel Sci Technol , 67, 304, 2013
43. C. L. Liu; W. Dong; G. Cao; J. Song; L. Liu; Y. Yang; Capacitance limits of activated carbon fiber electrode I aqueous electrolyte, Journal of The Electrochemical Society, 155, 1, F1, 2008
44. R. Xue; J. Yan; X. Liu; Y. Tian; B. Yi; Effect of activation on the carbon fibers from phenol-formaldehyde resins for electrochemical supercapacitor, J. Appl. Electrochem., 41, 1357, 2011
45. S. Brunauer; The adsorption of gases and vapor. Vol. 1,
Physical Adsorption, Princeton University, Princeton, Now York,
1943
46. J.Y. Ying; C.P. Mehnert; M.S. Wong; Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chem. Int. Ed., 38, 56, 1999
47. S. Brunaller; P.H. Emmett; E. Teller; Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309, 1938
48. R. Ryoo; S.H. Joo; S. Jun; Synthesis of highly ordered carbon molecular sieve via template-mediated structural transformation. J. Phys. Chem. B, 103, 7743, 1999
49. A.H. Schoen, NASH Technical Note D-5541, NASH:
Washington, DC, 1970.
50. C. Rao; A. Sood; K. Subrahmanyam; A. Govindaraj; Graphene : the new dimensional nanomaterial, Angw Chem., Int. Ed., 48, 7752, 2009
51. P. Tarazona, U.M.B. Marconi, R. Evans, Mol. Phys., 60, 543, 1987
52. C.D. Wagner; W.M. Riggs; L.E. Davis; J.F. Moulder; G.E.
Muilenberg; Handbook of X-Ray photoelectron spectroscopy,
Perkin-Elmer, Eden Prairie, Minnesota, 1979.
53. H.D. Young; Physics, Addison-Wesley Publishing Co, New
York, 1992
54. A.J. Bard; L.R. Faulkner; Electrochemical principles, methods,
and applications, Oxford University, Britain, 1996.
55. D. Qu; H. Shi; Studies of activated carbons used in double layer capacitors, J. Power Sources, 74, 99, 1998.
56. J.S. Mattson; Jr. H.B. Mark; Activated carbon : surface
chemistry and adsorption from Solution, Wiley-Vch : New
York, 1998
57. A.J. Bard; L.R. Faulkner; Electrochemical methods
fundamental and application, John Wiley & Sons, Canada,
1980
58. B.E. Conway; Electrochemical supercapacitors scientific
fundamentals and technological applications, Kluwer Academic,
New York, 105, 1999
59. C. W. Huang; C. T. Hsieh; P. L. Kuo; H. Teng; Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes, J. Mater. Chem.,22, 7314, 2012
60. J. Wang; S. Kaskel; KOH activation of carbon-based materials for energy storage, J. Mater. Chem., 22, 23701, 2012
61. H. Teng; T. S. Yeh; L. Y. Hsu; Preparation of activated carbon from bituminous coal with phosphoric acid activation, Carbon, 36, 1387, 1998
62. G. Zhao; L. Jiang; Y. He; J. Li; H. Dong; X. Wang; W. Hu; Sulfonated graphene for persistent aromatic pollutant management, Adv. Mater. 23, 3959, 2011
63. H. C. Huang; C. W. Huang; C. T. Heieh; P. L. Kuo; J. M. Ting;
H. Teng; Photocatalytically reduced graphite oxide electrode for electrochemical capacitors. J. Phys. Chem. C, 115, 20689, 2011
64. R.D. Levie; On porous electrode in electrolyte solutions : I. capacitance effects. Electrochim. Acta, 8,751, 1963
65. L.G. Austin, E.G. Gagnon, J. Electrochem. Soc., 120, 251, 1973.
66. Y. J. Oh; J. J. Yoo; Y. I. Kim; J. K. Yoon; H. N. Yoon; J. H. Kim;
S. B. Park; Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochimica Acta, 116, 118, 2014
67. Y. Fang; B. Luo; Y. Jia; X. Li; B. Wang; Q. Song; F. Kang; L.
Zhi; Renewing functionalized graphenes as electrode for high-performance supercapacitors, Advance materials, 24, 6348, 2012
68. M.A. Montes-Morán; D. Suárez; J.A. Menéndez; E. Fuente; On the nature of basic sites on carbon surfaces : an overreview, Carbon, 42, 1219, 2004
69. H. Andreas; B. Conway; Examination of the double-layer capacitance of high specific-area C-cloth electrode as titrated from acidic to alkaline pHs, Electrochimica Acta, 51, 6510, 2006
70. A.G. Pandolfo; A.F. Hollenkamp; Carbon properties and their role in supercapacitor. J. Power Sources, 157, 11, 2006
71. V.V. Panic; R.M. Stevanovic; V.M. Jovanovic; A.B. Dekanski; Electrochemical and capacitive properties of thin-layer carbon black electrodes. J.Power Sources, 181,186, 2008.
72. B.Fang; L. Binder; A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, Journal of Power Sources, 163,616, 2006
73. B. Fang; L. Binder; Enhanced surface hydrophobisation of improved performance of carbon aerogel electrochemical capacitor, Electrochimica Acta,52, 6916, 2007
74. Y. Guo; Z. Q. Shi; M. M. Chen; C. Y. Wang; Hierarchical porous carbon from sulfonated pitch for electrical double layer capacitors, Journal of Power Sources, 252, 235, 2014
75. Y. K. Hsu; Y. C. Chen; Y. G. Lin; L. C. Chen; K. H. Chen; High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral solution, J. Mater. Chem. , 22, 3383, 2012
76. M.P. Bichat; E. Raymundo-Piñero; F. Béguin; High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon, 48, 4351, 2010
77. R. Kötz; M. Carlen; Principles and applications of electrochemical capacitors, Electrochim. Acta, 45, 2483, 2000
78. Y. R. Nian; H. Teng; Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors, Journal of Electroanalytical Chemistry, 540, 119, 2003
79. E. G. Calvo; F. Lufrano; P. Staiti; A. Brigandi; A. Arenillas; J. A. Menéndez; Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel, Journal of Power sources, 241, 776, 2013
80. Y. Zhou; W. Wang; D. B. Xiong; G. Shao; W. Xia; S. Yu; F. Gao; Titanium carbide derived nonoporous carbon for supercapacitor application, International Journal of Hydrogen Energy, 37, 19395, 2012
81. Y. H. Chien; H. Teng; The capacitive performance of activated mesophase pitch in aqueous electrolyte solution of varying pH values, National Cheng Kung University, Taiwan, 2012
82. X. Sun; X. Zhang; H. Zhang; D. Zhang; Y. Ma; A comparative study of activated carbon- based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes, Journal of Solid State Electrochemistry, 16, 2597, 2012
83. J. Lang; X. Yan; W. Liu; R. Wang; Q. Xue; Influence of nitric modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes, Journal of Power Sources, 204, 220, 2013
84. S. E. Chun; J. F. Whitacre; The evolution of electrochemical functionality of carbons derived from glucose during pyrolysis and activation, Electrochimica Acta, 60, 392, 2012
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw