系統識別號 U0026-2207201409340700
論文名稱(中文) 孕期壓力對於海馬迴神經可塑性之影響
論文名稱(英文) Impact of prenatal stress on hippocampal neuroplasticity
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 葉哲銘
研究生(英文) Che-Ming Yeh
電子信箱 highcmc@gmail.com
學號 S58961010
學位類別 博士
語文別 英文
論文頁數 76頁
口試委員 指導教授-許桂森
中文關鍵字 孕期壓力  長期增益現象  長期抑制現象  腦神經滋養因子 
英文關鍵字 prenatal stress  long-term potentiation  long-term depression  BDNF  tPA  p-CREB 
中文摘要 早期的的環境暴露對於日後的生長造成極大的影響。來自動物和人類研究證據指出,暴露於壓力下的懷孕母親會影響後生子代大腦正常的發育和功能。當子代暴露於過多的壓力時,成長過程早期會產生注意力下降、訊息處理能力受損、易被驚嚇而失眠等,進而造成日後認知缺損及情感失調的問題發生。雖然目前對於孕期壓力如何造成認知缺損的相關機制了解仍不清楚,一般認為主導認知功能的海馬迴區域結構及功能上發生改變可能與此等作用的發生有關。因此我們提出的假說為當子代暴露於子宮環境壓力下會影響其海馬迴區域的神經可塑性,致使神經網絡發生改變並造成日後精神病理的發生。
我們發現到孕期壓力對出生子代所造成的影響是來自於神經突觸塑性的改變,並不影響個體的成長曲線。在受孕期壓力的子代海馬迴 CA1 區域的腦薄片電生理記錄長期增益現象 (LTP) 是有被抑制的,然而長期抑制現象 (LTD) 是延遲至子代大鼠五周時,仍有表現。以調控代謝型麩胺酸受體的選擇性促進劑(RS)-3,5-dihydroxyphenylglycine (DHPG) 形式誘發的長期抑制現象並不受影響。經由細分不同的細胞分子蛋白質組成成份,初步觀察孕期壓力及對照組的NMDA 接受體組成次單元 NR1、NR2A、NR2B 都沒有顯著的改變。值得注意的是在我們實驗中發現到,受孕期壓力的組別,pro-BDNF 有顯著的增加及 tPA 有減少的情形。這結果暗示 pro-BDNF 轉變成 mBDNF 的過程受到抑制,而這過程可能是日後孕期壓力造成海馬迴神經突觸塑性的影響。雖然我們並沒有觀察到孕期壓力對於 tPA 基因有表觀遺傳上的調控。但在受孕期壓力的子代大鼠上,以 ChIP 分析看到磷酸化的 CREB 結合至 tPA 的轉錄子的量有減少的情形,造成的相關機制需進一步研究釐清。暸解此等相關的機制有助於開發更有效的治療策略及方法來緩解孕期壓力所造成的精神病理疾病發生。
英文摘要 The environment in early life can have a major impact on later life. Extensive evidence from animal and human studies suggests that maternal stress may impede normal brain development and functions of their offspring. A significant number of stress exposed offspring show selective impairments of attention, arousal and information processing, which appear early in lifetime and later go on to develop into major cognitive deficits and affective disorders later in life. Although the biological consequence and underlying mechanisms by which prenatal stress exposure causes the cognitive deficits remain essentially unknown, it has been proposed to be the results of alterations in the anatomical organization or function of the hippocampus, a brain region critically involved in the control of cognitive functions. The overall hypothesis to be evaluated is that exposure to stress in utero alters synaptic plasticity in the hippocampus and these aberrant regulations may result in maladaptive changes in neural circuitry that enhance the risk of developing psychopathology later in life.
We found that the prenatal stress on the impact of the offspring came from the change of synaptic plasticity without effects on the growth curve. Electrophysiological recording on hippocampal CA1 brain slices from prenatal stressed offspring showed impairment in the induction of long term potentiation (LTP). However, the induction of long term depression (LTD) was prolonged to express in 5-weeek-old offspring by prenatal stress. The induction of LTD by metabotropic glutamate receptor (RS)-3,5-dihydroxyphenylglycine (DHPG) was not affected by prenatal stress. By separating different subcellular fractionation, the expression of NMDA receptor subunit NR1, NR2A, NR2B showed no significant difference between prenatal stress and control group. Notably, we found that prenatal stress induced a significant increase in the levels of pro-BDNF and the decrease in the levels of tissue plasminogen activator (tPA). These results suggest that an inhibition of the converting process of pro-BDNF to mBDNF may be account, at least in part, to the effect of prenatal stress on the subsequent induction of hippocampal synaptic plasticity in later life. Although we did not observe a role for epigenetic regulation of tPA gene in the effect of prenatal stress on tPA expression. However, the phosphorylation of CREB (p-CREB) binding to tPA promoter was decreased in PS-treated rats by ChIP assay and associated mechanism needs further experiment to elucidate. Understanding the biochemical substrates and the underlying mechanisms of the cognitive deficits induced by prenatal stress exposure will facilitate the development of more effective intervention strategies target these pathways to treat mental illnesses.
論文目次 Contents
Abstract in Chinese I
Abstract II
Acknowledgement IV
Contents V
Table content VII
Figure contents VIII
Abbreviations X
I. Introduction 1
1.1. Impact of prenatal stress on fetus’s outcomes 1
1.2. Hypothalamus-pituitary-adrenal (HPA) axis 1
1.3. Brain-derived neurotrophic factor (BDNF) 3
1.4. LTP and LTD 4
1.5. tPA and CREB 4
Specific Aims 6
Significance 6
II. Materials and Methods 7
2.1. Animals 7
2.2. Prenatal stress procedure 7
2.3. Plasma cortisosterone assay 8
2.4. Hippocampal slice preparations and electrophysiology 8
2.5. Preparation of synaptoneurosomes 10
2.6. Preparation of subcellular fractions 10
2.7. Quantitative real-time PCR (qRT-PCR) 10
2.8. Western blotting 11
2.9. tPA zymography 12
2.10. Matrix metalloprotease zymography 13
2.11. tPA activity assay 13
2.12. MMP activity assay 14
2.13. Histology and quantification 14
2.14. Golgi impregnation 15
2.15. Chromatin immunoprecipitation (ChIP) assay 16
2.16. Bisulfite conversion and Pyrosequencing 17
2.17. Preparation of primary hippocampal cultured neuron 18
2.18. pharmacological treatment 19
2.19. Data analysis 19
III. Results 20
3.1. Effect of PS on fetal somatic growth 20
3.2. Effect of PS on glutamatergic synaptic transmission 20
3.3. PS impairs LTP but enhances LTD induction 21
3.4. PS does not alter dendritic morphology of hippocampal CA1 pyramidal neurons 24
3.5. PS does not affect the expression of NMDA receptor subunits 25
3.6. PS inhibits the proteolytic conversion of pro-BDNF to mBDNF 26
3.7. Regulation of tPA gene expression 29
3.8. Mimic the PS effect in culture neuron system 30
IV. Discussion 31
V. Conclusion 38
VI. References 40
VII. Publications 76

參考文獻 Adhami F, Yu D, Yin W, Schloemer A, Burns KA, Liao G, Degen JL, Chen J, Kuan CY (2008) Deleterious effects of plasminogen activators in neonatal cerebral hypoxia-ischemia. Am J Pathol 172:1704-1716.
Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, Luoni A, Calabrese F, Tansey K, Gennarelli M, Thuret S, Price J, Uher R, Riva MA, Pariante CM (2013) Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci U S A 110:8708-8713.
Baker-Andresen D, Ratnu VS, Bredy TW (2013) Dynamic DNA methylation: a prime candidate for genomic metaplasticity and behavioral adaptation. Trends Neurosci 36:3-13.
Baquedano E, Garcia-Caceres C, Diz-Chaves Y, Lagunas N, Calmarza-Font I, Azcoitia I, Garcia-Segura LM, Argente J, Chowen JA, Frago LM (2011) Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats. PLoS One 6:e27549.
Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549-553.
Barros VG, Rodriguez P, Martijena ID, Perez A, Molina VA, Antonelli MC (2006) Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse 60:609-618.
Bashir ZI (2003) On long-term depression induced by activation of G-protein coupled receptors. Neurosci Res 45:363-367.
Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32-48.
Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39.
Bolshakov VY, Siegelbaum SA (1994) Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264:1148-1152.
Bramham CR (2008) Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol 18:524-531.
Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65:56-79.
Darnaudery M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57:571-585.
Davis EP, Sandman CA (2010) The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev 81:131-148.
Dunah AW, Standaert DG (2003) Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. J Neurochem 85:935-943.
Evans AN, Liu Y, Macgregor R, Huang V, Aguilera G (2013) Regulation of hypothalamic corticotropin-releasing hormone transcription by elevated glucocorticoids. Mol Endocrinol 27:1796-1807.
Gillott A, Standen PJ (2007) Levels of anxiety and sources of stress in adults with autism. J Intellect Disabil 11:359-370.
Gladding CM, Collett VJ, Jia Z, Bashir ZI, Collingridge GL, Molnar E (2009) Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Mol Cell Neurosci 40:267-279.
Goldstein DS (2010) Adrenal responses to stress. Cell Mol Neurobiol 30:1433-1440.
Guan L, Jia N, Zhao X, Zhang X, Tang G, Yang L, Sun H, Wang D, Su Q, Song Q, Cai D, Cai Q, Li H, Zhu Z (2013) The involvement of ERK/CREB/Bcl-2 in depression-like behavior in prenatally stressed offspring rats. Brain Res Bull 99:1-8.
Holmberg M, Leonardsson G, Ny T (1995) The species-specific differences in the cAMP regulation of the tissue-type plasminogen activator gene between rat, mouse and human is caused by a one-nucleotide substitution in the cAMP-responsive element of the promoters. Eur J Biochem 231:466-474.
Hosseini-Sharifabad M, Hadinedoushan H (2007) Prenatal stress induces learning deficits and is associated with a decrease in granules and CA3 cell dendritic tree size in rat hippocampus. Anat Sci Int 82:211-217.
Huang CC, You JL, Wu MY, Hsu KS (2004) Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI.Rab5 complex. Potential role in (S)-3,5-dihydroxyphenylglycene-induced long term depression. J Biol Chem 279:12286-12292.
Huang YF, Yang CH, Huang CC, Tai MH, Hsu KS (2010) Pharmacological and genetic accumulation of hypoxia-inducible factor-1alpha enhances excitatory synaptic transmission in hippocampal neurons through the production of vascular endothelial growth factor. J Neurosci 30:6080-6093.
Huber KM, Kayser MS, Bear MF (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288:1254-1257.
Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96:1374-1388.
Ikegaya Y, Ishizaka Y, Matsuki N (2002) BDNF attenuates hippocampal LTD via activation of phospholipase C: implications for a vertical shift in the frequency-response curve of synaptic plasticity. Eur J Neurosci 16:145-148.
Lee CC, Huang CC, Hsu KS (2011) Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology 61:867-879.
Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945-1948.
Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci U S A 97:11032-11037.
Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427-1431.
Lin HJ, Huang CC, Hsu KS (2006) Effects of neonatal dexamethasone treatment on hippocampal synaptic function. Ann Neurol 59:939-951.
Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603-614.
Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14:401-416.
Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89:312-323.
Maccari S, Piazza PV, Kabbaj M, Barbazanges A, Simon H, Le Moal M (1995) Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J Neurosci 15:110-116.
Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27:119-127.
Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5-21.
Mao LM, Wang W, Chu XP, Zhang GC, Liu XY, Yang YJ, Haines M, Papasian CJ, Fibuch EE, Buch S, Chen JG, Wang JQ (2009) Stability of surface NMDA receptors controls synaptic and behavioral adaptations to amphetamine. Nat Neurosci 12:602-610.
Martinez-Tellez RI, Hernandez-Torres E, Gamboa C, Flores G (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63:794-804.
Morley-Fletcher S, Darnaudery M, Koehl M, Casolini P, Van Reeth O, Maccari S (2003) Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Res 989:246-251.
Morley-Fletcher S, Mairesse J, Soumier A, Banasr M, Fagioli F, Gabriel C, Mocaer E, Daszuta A, McEwen B, Nicoletti F, Maccari S (2011) Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology (Berl) 217:301-313.
Morrison KE, Rodgers AB, Morgan CP, Bale TL (2014) Epigenetic mechanisms in pubertal brain maturation. Neuroscience 264C:17-24.
Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28:9055-9065.
Murgatroyd C, Spengler D (2011) Epigenetic programming of the HPA axis: early life decides. Stress 14:581-589.
Murmu MS, Salomon S, Biala Y, Weinstock M, Braun K, Bock J (2006) Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci 24:1477-1487.
Nagappan G, Zaitsev E, Senatorov VV, Jr., Yang J, Hempstead BL, Lu B (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 106:1267-1272.
Neeley EW, Berger R, Koenig JI, Leonard S (2011) Prenatal stress differentially alters brain-derived neurotrophic factor expression and signaling across rat strains. Neuroscience 187:24-35.
Owen D, Andrews MH, Matthews SG (2005) Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neurosci Biobehav Rev 29:209-226.
Pallares ME, Scacchi Bernasconi PA, Feleder C, Cutrera RA (2007) Effects of prenatal stress on motor performance and anxiety behavior in Swiss mice. Physiol Behav 92:951-956.
Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36:1517-1532.
Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487-491.
Petralia RS, Wang YX, Wenthold RJ (1994) The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J Neurosci 14:6102-6120.
Pham NL, Franzen A, Levin EG (2004) NF1 regulatory element functions as a repressor of tissue plasminogen activator expression. Arterioscler Thromb Vasc Biol 24:982-987.
Philpot BD, Espinosa JS, Bear MF (2003) Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. J Neurosci 23:5583-5588.
Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545-1564.
Rice F, Jones I, Thapar A (2007) The impact of gestational stress and prenatal growth on emotional problems in offspring: a review. Acta Psychiatr Scand 115:171-183.
Salles FJ, Strickland S (2002) Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci 22:2125-2134.
Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:10831-10836.
Son GH, Geum D, Chung S, Kim EJ, Jo JH, Kim CM, Lee KH, Kim H, Choi S, Kim HT, Lee CJ, Kim K (2006) Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity. J Neurosci 26:3309-3318.
Szuran TF, Pliska V, Pokorny J, Welzl H (2000) Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 71:353-362.
Tollenaar MS, Beijers R, Jansen J, Riksen-Walraven JM, de Weerth C (2011) Maternal prenatal stress and cortisol reactivity to stressors in human infants. Stress 14:53-65.
Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM (1989) Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci 9:1705-1711.
Vallee M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17:2626-2636.
Van den Hove DL, Steinbusch HW, Scheepens A, Van de Berg WD, Kooiman LA, Boosten BJ, Prickaerts J, Blanco CE (2006) Prenatal stress and neonatal rat brain development. Neuroscience 137:145-155.
Villaran RF, de Pablos RM, Arguelles S, Espinosa-Oliva AM, Tomas-Camardiel M, Herrera AJ, Cano J, Machado A (2009) The intranigral injection of tissue plasminogen activator induced blood-brain barrier disruption, inflammatory process and degeneration of the dopaminergic system of the rat. Neurotoxicology 30:403-413.
Walker FR, Knott B, Hodgson DM (2008) Neonatal endotoxin exposure modifies the acoustic startle response and circulating levels of corticosterone in the adult rat but only following acute stress. J Psychiatr Res 42:1094-1103.
Ward IL, Weisz J (1984) Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology 114:1635-1644.
Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847-854.
Weinstock M (2005) The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun 19:296-308.
Wells DG, Dong X, Quinlan EM, Huang YS, Bear MF, Richter JD, Fallon JR (2001) A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons. J Neurosci 21:9541-9548.
Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069-1077.
Wu F, Echeverry R, Wu J, An J, Haile WB, Cooper DS, Catano M, Yepes M (2013) Tissue-type plasminogen activator protects neurons from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3 signaling pathway. Mol Cell Neurosci 52:9-19.
Yaka R, Salomon S, Matzner H, Weinstock M (2007) Effect of varied gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats. Behav Brain Res 179:126-132.
Yang J, Han H, Cao J, Li L, Xu L (2006) Prenatal stress modifies hippocampal synaptic plasticity and spatial learning in young rat offspring. Hippocampus 16:431-436.
Yang J, Hou C, Ma N, Liu J, Zhang Y, Zhou J, Xu L, Li L (2007) Enriched environment treatment restores impaired hippocampal synaptic plasticity and cognitive deficits induced by prenatal chronic stress. Neurobiol Learn Mem 87:257-263.
Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W, Tessarollo L, Lee FS, Lu B, Hempstead BL (2009) Neuronal release of proBDNF. Nat Neurosci 12:113-115.
Zagron G, Weinstock M (2006) Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats. Behav Brain Res 175:323-328.
Zhang LI, Poo MM (2001) Electrical activity and development of neural circuits. Nat Neurosci 4 Suppl:1207-1214.
Zucker RS (1989) Short-term synaptic plasticity. Annu Rev Neurosci 12:13-31.
Zuena AR, Mairesse J, Casolini P, Cinque C, Alema GS, Morley-Fletcher S, Chiodi V, Spagnoli LG, Gradini R, Catalani A, Nicoletti F, Maccari S (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One 3:e2170.
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-15起公開。

  • 如您有疑問,請聯絡圖書館