進階搜尋


下載電子全文  
系統識別號 U0026-2207201323344800
論文名稱(中文) 以有機金屬氣相磊晶成長周期性結構以及量子井結構設計改善氮化鎵元件光電特性之研究
論文名稱(英文) Improved Optoelectronic Characteristics of GaN-Based Devices with Periodic Dielectric Structures and Quantum Well Structure Design by Metalorganic Vapor Phase Epitaxy
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 楊亞諭
研究生(英文) Ya-Yu Yang
學號 L78981084
學位類別 博士
語文別 英文
論文頁數 120頁
口試委員 指導教授-賴韋志
口試委員-張守進
口試委員-洪瑞華
口試委員-郭浩中
口試委員-許進恭
口試委員-李允立
口試委員-郭政達
口試委員-林恆光
口試委員-杜立偉
中文關鍵字 氮化鎵  發光二極體  SiO2 pillar 和air gap  太陽能電池  短周期量子井 
英文關鍵字 GaN  light-emitting diodes  SiO2 pillar and the air gap  solar cells  short-period quantum well 
學科別分類
中文摘要 本論文以有機金屬氣相磊晶法來改善三族氮化物元件之光電特性。首先我們置入周期性排列的SiO2 pillar 和air gap結構於GaN中,我們利用側向磊晶技術來改善磊晶品質,再藉由周期性排列的結構來增加光在元件內部散射的機率。實驗中,我們得到較小的漏電流藉由側向磊晶技術來降低磊晶缺陷密度,並且也提升了光輸出功率。我們利用SiO2 pillar 和air gap結構,可以提升光輸出功率50%以上。除此之外,我們也結合air gap和圖形化基板,實驗中也提升內部量子效率9.6%以及光萃取效率43.8%。
另外,我們也改善光輸出功率以及太陽能轉換效率藉由厚的短周期InGaN/GaN MQW導入H2於GaN caped layer, 我們得到20mA電流注入下光輸出功率提升25.6%,也改善了LED的droop現象,由55%降為36.7%。另外,在太陽能元件上,我們成長厚的短周期InGaN/GaN MQW導入H2於GaN caped layer於圖形化基板上,得到功率轉換效率1.36%,藉由圖形化基板,提升了76.7%的功率轉換效率。
英文摘要 In this dissertation, growth and fabrication of III-nitride-based optoelectronic devices by Metal Organic Vapor Phase Epitaxial (MOVPE) have been studies. We achieved a small reverse leakage current because of the quality improvement of the lateral growth-induced crystal. Similar random scattering of light can be achieved by the embedded SiO2 pillars and air gap array structures. First, we improved the External Quantum Efficiency (IQE) by embedded SiO2 pillars and air gap array structures in u-GaN layers. In our study, the embedded 500 nm height SiO2 pillars and air gap array structures could enhance Light-Emitting Diode (LED) output power by more than 50% due to the enhanced guided-light scattering efficiency in our study. With the combination of air gap array and Patterned Sapphire Substrate (PSS), we achieved a small reverse leakage current. The study also reveals that the LED with combined air gap array and PSS exhibited the largest IQE and Light Extraction Efficiency (LEE) enhancements 9.6% and 43.8%, respectively.
In our study, we also demonstrate the light output power enhancement and conversion efficiency enhancement of thick well short-period InGaN/GaN MQW LEDs and Solar Cells (SCs) with thickness-fluctuated InGaN well with H2 in GaN barrier spacer layer. Consequently, the thick well short-period InGaN/GaN MQW LEDs with thickness-fluctuated InGaN well that were fabricated in this study had a 20-mA output power enhancement of 25.6% and a decreased efficiency droop from 55.0% to 36.7% compared with traditional long-period InGaN/GaN MQW LEDs. The power conversion efficiency (η%) of thick-well InGaN/GaN SPMQW SCs with H2 on PSS (1.36%) showed a 76.6% increase compared with thick-well InGaN/GaN SPMQW SCs with H2 on plane sapphire (0.77%).

論文目次 摘要 I
Abstract II
致謝 IV
Contents V
Table Captions VIII
Figure Captions IX
CHAPTER 1 Introduction 1
1.1 Group III-Nitride Compound Semiconductors: Properties and Applications 1
1.2 Background of Group III-Nitride Semiconductors 2
References 10
CHAPTER 2 Metalorganic Vapor Phase Epitaxy System 16
2.1 Introduction 16
2.2 MOCVD Reactor 19
2.3 In-Situ Monitoring During III-Nitrides Growth 21
References 26
CHAPTER 3 Light Output Power Improvement in III-Nitride Based Light Emitting Diodes with embedded SiO2 Pillars and Air Gap Array Structures 27
3.1 Introduction 27
3.2 Growth and characterization of embedded SiO2 pillars and air gap array structures in GaN by re-growth MOVPE 29
3.3 Enhancement of LED output power with embedded SiO2 pillars and air gap array structures 33
3.4 Enhancement of LED output power with embedded air gap array structures 38
3.5 Summary of embedded SiO2 pillars and air gap array structures and embedded air gap array structures 41
3.6 Enhancement of LED output power with air gap array and patterned sapphire substrate 44
References 61
CHAPTER 4 Optoelectrical Characteristics Improvement in III-Nitride Based Light Emitting Diodes of InGaN/GaN thick well short-period quantum well light-emitting diodes with H2 in GaN barrier spacer layer 64
4.1 Introduction 64
4.2 Growth and characterization of InGaN/GaN thick well short-period quantum well light-emitting diodes with H2 in GaN barrier spacer layer 66
4.3 Optoelectrical characteristics of InGaN/GaN thick well short-period quantum well light-emitting diodes with H2 in GaN barrier spacer layer 70
References 78
CHAPTER 5 Solar Cell Physics 83
5.1 Principles of Solar Energy Conversion 83
5.2 Solar Spectral Irradiance 83
5.3 Typical Solar Cell Structures 85
5.3.1 p-n junction 85
5.3.2 p-i-n Junction 86
5.4 Photovoltaic Characteristics of Solar Cells 87
5.4.1 The Ideal Equivalent Circuit Model 88
5.4.2 Parasitic Resistances 90
5.4.3 Recombination in Solar Cells 91
References 97
CHAPTER 6 Efficiency improvement of short-period InGaN/GaN multiple-quantum solar cells with H2 in the GaN cap layer 98
6.1 Introduction 98
6.2 Growth and characterization of InGaN/GaN thick well short-period quantum solar cells with H2 in GaN barrier spacer layer 100
6.3 Optoelectrical characteristics of short-period InGaN/GaN multiple-quantum well solar cells with H2 in the GaN cap layer 102
References 113
CHAPTER 7 Conclusions and Future works 115
7.1 Conclusions 115
7.2 Future works 117
Publication List 118
參考文獻 Chapter 1 references
[1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967-3969, 2002.
[2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, and William J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett., vol. 80, no.25, pp. 4741-4743, 2002.
[3] Y.F. Wu, B.P. Keller, D. Kapolnek, P. Kozodoy, S.P. Denbaars, and U.K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett.vol. 69, pp. 1438-1440, 1996.
[4] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions”, Appl. Phys. Lett., vol. 60, no. 24, pp. 3027-3029, 1992.
[5] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Applied Physics Letters., vol. 62, no. 15, pp. 1786–1787, 1993.
[6] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80 V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2457-2459, 2000.
[7] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20,
no. 6, pp. 277–279, 1999.
[8] R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem. Chem.,“Über die kristallstrukturen von Cu3N, GaN und InN metallamide und metallnitride,” Zeitschrift für anorganische und allgemeine Chemie, vol. 234, pp. 282-287, 1938.
[9] H. Grimmeiss and H. Koelmans, Z. Naturfg. Nitride semiconductors and devices, 14a, pp. 264 , 1959.
[10] H. P. Marusk and J. J. Tietjen, “The preparation and properties of vapor‐deposted single‐crystal‐line GaN,” Appl. Phys. Lett., vol. 15, pp. 327-329, 1969.
[11] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN electroluminescent diodes,”RCA Review, vol. 32, pp. 383-386, 1971.
[12] S. Nakamura and G. Fasol, “The blue laser diode: GaN based light emitters and lasers,” Springer, 1997.
[13] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,”Appl. Phys. Lett., vol.48, pp.353-356, 1986.
[14] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1705-1707, 1991.
[15] J. I. Pankove, S. Bloom, and G. Harbeke, “Optical properties of GaN,” RCA Rev., vol. 36, pp. 163-166, 1975.
[16] W. Seifert, R. Franzheld, E. Butter, H. Sobotta, and V. Riede, “On the origin of free carriers in high-conducting n-GaN,” Crystal Res. Technol., vol. 18, no. 3, pp. 383-390, 1983.
[17] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Jpn. J. Appl. Phys., vol. 31, 1258-1261, 1992.
[18] S. Nakamura, T. Mukai and M. Senoh, “High‐brightness InGaN/AlGaN double‐heterostructure blue‐green‐light‐emitting diodes,” Appl. Phys. Lett., vol.64, pp.1687-1690, 1994.
[19] S. Nakamura et al., “Dynamics of optical gain in InGaN multi-quantum-well-based laser diodes,” Appl. Phys. Lett. , vol.76, pp. 22-26, 2000.
[20] M.T. Duffy, C.C. Wang, G’D. O’Clock, S.H. McFarlane III, and P.J. Zanzucchi, “Epitaxial growth and piezoelectric properties of A1N, GaN, and GaAs on sapphire or spinel,” J. Elect. Mat. , vol.2, pp.359-361, 1973.
[21] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. vol.79, pp.7433-7473, 1996.
[22] G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN pin and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol.71, pp.2154-2157, 1997.
[23] I.J. Fritz and T.J. Drummond, “AlN-GaN quarter-wave reflector stack grown by gas-source MBE on (100) GaAs,” Electron. Lett.vol. 31, pp.68-69, 1995.
[24] R. C. Tu, C. J. Tun, S. M. Pan, H. P. Liu, C. E. Tsai, J. K. Sheu, C. C. Chuo, Te-Chung Wang, G. C. Chi, and I. G. Chen.,“Improvement of near-ultraviolet InGaN-GaN light-emitting diodes through higher pressure grown underlying GaN layers,” IEEE PTL, vo;.15, pp.1041-1135, 2003.
[25] Ru-Chin Tu, Chun-Ju Tun, Shyi-Ming Pan, Chang-Cheng Chuo, J. K. Sheu, Ching-En Tsai, Te-Chun Wang, and Gou-Chung Chi, Improvement of near-ultraviolet InGaN-GaN light-emitting diodes through higher pressure grown underlying GaN layers,” IEEE PTL, vol.15, 1342-1345, 2003.
[26] S. Nakamura, T. Mukai, and M. Senoh, “High‐brightness InGaN/AlGaN double‐heterostructure blue‐green‐light‐emitting diodes,” Appl. Phys. Lett.vol. 64, 1687-1690, 1994.
[27] H. Morkoç and S.N. Mohammad, “High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes,” Science Magazine , vol.267, pp.51-55, 1995.
[28] H. Morkoç and S.N. Mohammad, “Light Emitting Diodes,” in Wiley Encyclopedia of Electrical Engineering and Electronics Engineering, J. Webster, ed. John Wiley and Sons, New York, 1999.
[29] R. C. Tu, C. J. Tun, J. K. Sheu, W. H. Kuo, T. C. Wang, C. E. Tsai, J. T. Hsu,Jim Chi, and G. C. Chi, “Improvement of near-ultraviolet InGaN-GaN light-emitting diodes through higher pressure grown underlying GaN layers,” IEEE EDL, vol.24, pp.206-210, 2003.
[30] S. Nakamura, M. Senoh, N. Nagahama, N. Iwara, T. Yamada, T. Matsushita, H.Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. vol.35, L74-L76, 1997.
[31] T. Nishida, H.Saito, and N. Kobayashi,“Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett., vol.79, pp.711-712, 2001.
[32] H. X. Wang, H. D. Li, Y.B. Lee, H. Sato, K. Tamashita, T. Sugahara, and S. Sakai, “Fabrication of high-performance 370 nm ultraviolet light-emitting diodes,” J. Crystal Growth, vol.264, pp.48-52, 2004.
[33] T. Wang, Y. H. Liu, Y. B. Lee, J. P. Ao, J. Bai, and S. Sakai, “1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate,” Appl. Phys. Lett., vol.81, pp.2508-2510, 2002.
[34] M. Iwayal, S. Terao, S.Takanami, A.Miyazaki, S. Kamiyama, H. Amano, and I. Akasaki, “Characteristics of p-type contact on GaN-based light emitting devices,” Phys. Stat. Sol. (c), vo;.1, pp.34-37, 2002.
[35] T. Nishida, N. Kobayashi, and T. Ban, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. vol.82, pp.3817-3819, 2003.
[36] D. K. Kim, “Effect of AlN buffer thickness on stress relaxation in GaN layer on Si(111),” Solid State Electronics, vol. 51, pp. 1005-1008, 2007.
[37] A. Dadgar, F. Schulze, M. Wienecke, A. Gadanecz, J. Blasing, P. Veit, T. Hempel, A. Diez, J. Christen, and A. Krost, “Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction,” New Journal of Phys., vol. 9, pp. 389-341, 2007.
[38] H. Ohsato and M. Razeghi, “Growth models of GaN thin films based on crystal chemistry: Hexagonal and cubic GaN on Si substrate,” Proc. SPIE, vol. 2999, pp. 288, 1997.
[39] E. S. Hellman, Z. L. Weber, and D. Buchanan, “Epitaxial growth and orientation of GaN on (100) gamma-LiAlO2,” MRS Internet J. Nitride Semicond. Res., vol. 2. pp. 30-33, 1997.
[40] X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng, and F. Zujie, “γ-LiAlO2 single crystal: a novel substrate for GaN epitaxy,” J. Cryst. Growth, vol. 193, pp. 127-132, 1998.
[41] P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razaghi,“Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β-LiGaO2 substrate,” Appl. Phys. Lett., vol. 69, pp. 6116-6118, 1996.
[42] X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, J. Nause, “GaN epitaxy on thermally treated c-plane bulk ZnO substrate with O and Zn faces,” Appl. Phys. Lett., vol. 84, pp. 2268-2270, 2004.
[43] B. Gil, “Group III nitride semiconductor compounds,” Clarendon Press, Oxford, pp. 33, 1998.
[44] T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial Lateral Overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys., vol. 27, no.6, pp. L964-L967, 1988.
[45] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 144, no. 3-4, pp. 133-140, 1994.
[46] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki,“Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN,” Jpn. J. Appl. Phys., vol. 37, no. 3B, L316-L318, 1998.
[47] H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 73, no. 6, pp. 747-749, 1998.
[48] Akira Sakai, Haruo Sunakawa, and Akira Usui, “Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth”, Appl. Phys. Lett., vol. 73, no. 4, pp. 481-483, 1998.
[49] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho,“InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., vol. 72, no. 2, pp. 211-213, 1998.
[50] S. T. Kim, H. Amano, I. Akasaki, and N. Koide, “Optical gain of optically pumped Al0.1Ga0.9N/GaN double heterostructure at room temperature,” Appl. Phys. Lett., vol. 64, pp. 1535-1536, 1994.
[51] R. F. Davis, “Deposition and characterization of diamond, silicon carbide and gallium nitride thin films,” J. Cryst. Growth, vol. 137, pp. 161-169, 1994.
[52] S. Nakamura, S. Pearton, and G. Fasol, “The blue laser diode: The complete story,” Springer, 2000.
[53] T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth, vol. 189, pp. 778-781, 1998.
[54] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yanga, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 77, pp. 2988-2990, 2000.
[55] J. C. Harris, H. Brisset, T. Someya, and Y. Arakawa, “Growth condition dependence of the photoluminescence properties of InxGa1-xN/InyGa1-yN multiple quantum wells grown by MOCVD,” Jpn. J. Appl. Phys., vol. 38, pp. 2613-2616, 1999.
[56] E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Bourtros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett., vol. 70, pp. 461-463, 1997.
[57] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to Piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382-385, 1997.
[58] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constant of III-V nitrides,” Phys. Rev. B, vol. 56, pp. 10024-10027, 1997.
[59] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., vol. 31, no. 2B, pp. L139-L142, 1991.
[60] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p ‐ type conduction in Mg ‐ doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 65, no. 5, pp. 593-594, 1994.
[61] W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg‐doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 68, no. 5, pp. 667-669, 1996.
[62] L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, no. 8, pp. 4491-4497, 1999.
[63] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2340-2342, 1999.
[64] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2289-2291, 1999.
[65] J. S. Jang, S. J. Park, and T. Y. Seong, “Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment,” J. Vac. Sci. Technol. B, vol. 17, no. 6, pp. 2667-2670, 1999.
[66] J. O. Song, J. S. Kwak, and Y. Park, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 86, pp. 062104-1-3, 2005.
[67] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett., vol. 73, no. 20, pp. 2953-5955, 1998.
[68] D. J. King, L. Zhang, J. C. Ramer, S. D. Hersee, and L. F. Lester, “Temperature Behavior of Pt/Au Ohmic Contacts to p-GaN,” Mater. Res. Soc. Symp. Proc., vol.468, pp. 421-425, 1997.
[69] H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni⁄Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 85, no. 24, pp. 5920-5922, 2004.
[70] M. Suzuki, T. Kawakami, T. Arai, S. Kobayashi, Y. Koide, T. Uemura, N. Shibata, and M. Murakami, “Low-resistance Ta/Ti Ohmic contacts for p-type GaN,” Appl. Phys. Lett., vol. 74, no. 2, pp. 275-277, 1999.
[71] J. S. Jang, I. S. Chang, H. K Kim, T. Y. Seong, S. Lee, and S. J. Park,“Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 1, pp. 70-72, 1999.
[72] L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang and A. Khan, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, no. 23, pp. 3451-3453, 2000.
[73] V. Adivarahan, A. Lunev, M. Asif Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska,“Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices,” Appl. Phys. Lett., vol. 78, no. 18, pp. 2781-2783, 2001.
Chapter 2 references
[1] H. P. Maruska and J. J. Tietjen, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., 15, pp. 367, 1969.
[2] H. Manasevi, F. M. Erdmann, and W. I. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials,” J. Electrochem. Soc., vol. 118, no. 11, pp. 1864-1868, 1971.
[3] H.M. Manasevit, “The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates,” J. Cryst. Growth, vol. 13-14, pp. 306-614, 1972.
[4] I. Akasaki, H. Amano, K. Iitoh, H. Sakai, T. Tanaka, and K. Manaba, Inst. Phys. Conf. Ser., vol. 129, pp. 851, 1992.
[5] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, 1994.
[6] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, J. Cryst. Growth. vol. 77, pp. 188-192, 1986.
[7] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory, and Practice", Academic Press, Inc., San Diego, 1989.
[8] S. Nakamura, Y. Harada, M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett., vol.58, pp. 2021-2023, 1991.
[9] S. Nakamura, “Analysis of Real-Time Monitoring Using Interference Effects,” Jpn. J. Appl. Phys., vol. 30, no.7, pp. 1348-1353, 1991.
[10] H. Amano, I. Akasak, K. Hiramatsu, and N. Koide, “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate,” Thin Solid Film, vol. 163, pp. 415-420, 1988.
Chapter 3 references
[1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai,“Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn.J. Appl. Phys., vol. 34, no. 10B, pp. L1332–L1335, 1995.
[2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
[3] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min and S. J. Park , “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Tech. Lett., vol. 18, pp. 1512-1514, 2006.
[4] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Electron. Dev., vol. 52, pp. 2346-2349, 2005.
[5] J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei, and W.C.Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, pp. 113505-3, 2006.
[6] C. M. Tsai, J. K. Sheu, W. C Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, “Enhenced output power in GaN-based LEDs with naturally textured surfaced growtn by MOCVD,” IEEE Electron. Dev. Lett., vol. 26, pp. 464-466, 2005.
[7] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke and J. K. Sheu, “Nitride-based LEDs with an SPS tunneling contact Layer and an ITO transparent contact,” IEEE Photon. Tech. Lett., vol. 16, pp.1002-1004, 2004.
[8] C. H. Kuo, S. J Chang, Y. K. Su, R. W. Chuang, C. S. Chang, L. W. Wu, W. C. Lai, J. F. Chen, J. K. Sheu, H. M. Lo and J. M. Tsai, “Nitride-based near-ultraviolet LEDs with an ITO transparent contact,” Materials Science and Engineering B, vol. 106, pp. 69-72, 2004.
[9] C. J. Tun, J. K. Sheu, B. J. Pong, M. L. Lee, M. Y. Lee, C. K. Hsieh, C. C. Hu, and G. C. Chi, “Enhanced light output of GaN-based power LEDs with transparent Al-doped ZnO current spreading layer,” IEEE Photon. Tech. Lett., vol. 18, pp. 274-276, 2006.
[10] J.H. Lee, J.T. Oh, Y.C. Kim, and J.H. Lee, “Stress reduction and enhanced extraction efficiency of GaN-based LED grown on Cone-shape-patterned sapphire,” IEEE Photon. Tech. Lett., vol. 20, pp. 1563-1565, 2008.
[11] R.M. Lin, Y.C. Lu, S.F. Yu, Y.C. S. Wu, C.H. Chiang, W.C. Hsu, and S.J. Chang, “Enhanced extraction and efficiency of blue light-emitting diodes prepared using two-step-etched patterned sapphire substrate,” J. Electrochem. Soc., vol. 156, pp. H874-H876, 2009.
[12] O.B Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Appl. Phys. Lett., vol. 89, pp. 071109-1–071109-2, 2006.
[13] T. Kim, A. J. Danner, and K. D. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” IEEE Electron. Lett., vol. 41, no. 20, pp. 1138-1139, Sep. 2005.
[14] J. J. Wierer et al., “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3885-3887, Apr. 2004.
[15] Y. K. Ee, R. A. Arif, and N. Tansu, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett., vol. 91, no. 22, pp. 221107-1-221107-3, Nov. 2007.
[16] J. J. Kim, A.N. Noemaun, F.W. Mont, D. Meyaard, E.F. Schubert, D.J. Poxson, H. Kim, C. Sone, and Y. Park, “Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars,” Appl. Phys. Lett., vol. 93, no. 22, pp. 221111-1-221111-3, Dec. 2008.
[17] T. Mukai, K. Takekawa, S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys. , vol.37, L839-L841 ,1998.
[18] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamaha, T. Matsusita, Y. Syimoto and H. Hiyoku, Jpn. J. Appl. Phys. vol.36, L1059-1062 ,1997.
[19] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W.Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 288–290, 2005.
[20] C. E. Lee, Y. J. Lee, H.C. Kuo,M.R. Tsai,B. S. Cheng, T.C. Lu, S. C.Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrarys,” IEEE Photon. Technol. Lett., vol. 19, no. 16, pp. 1200–1202, 2007.
[21] Y. K. Ee, J.M. Biser,W. Cao, H.M. Chan, R. P. Vinci, and N. Tansu,“Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1066–1072, 2009.
[22] E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett., vol. 93, p. 191103, 2008.
[23] H. G. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes,” Appl. Phys. Lett., vol. 95, no. 22, pp. 221110-1–221110-3, 2009.
[24] Boris V. L'vov“Kinetics and mechanism of thermal decomposition of GaN,” Thermochimica Acta, vol.360, pp.85-91, 2000.
[25] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), pp. 150.
[26] R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han, S. J. Pearton, F. Ren, J. C. Zolper, and L. F. Lester, "High density plasma-induced etch damage in GaN", Mater. Res. Soc. Symp. Proc., vol. 573, pp. 271, 1999.
[27] S.J. Chang, L.W. Wu, Y.K. Su, Y.P. Hsu, W.C. Lai, J.M. Tsai, J.K. Sheu, and C.T. Lee, “Nitride-based leds with 800C-grownp-AlInGaN/GaN double cap layers,” IEEE Photon. Technol. Lett., vol. 16, no. 12, pp. 1447–1449, 2004.
[28] Y.J. Lee, T.C. Lu, H.C. Kuo, and S.C. Wang, “High brightness GaN based light-emitting diodes,” J. Display Technol., vol. 3, no. 2, pp. 118–125, 2007.
[29] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431–1433, 2002.
[30] D.S. Wuu, W.K. Wang, W.C. Shih, R.H. Horng, C.E. Lee, W.Y. Lin, and J.S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 288–290, 2005.
[31] C.E. Lee, Y.J. Lee, H.C. Kuo, M.R. Tsai, B.S. Cheng, T.C. Lu, S.C. Wang, and C.T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrarys,” IEEE Photon. Technol. Lett., vol. 19, no. 16, pp. 1200–1202, 2007.
[32] S.J. Chang, C.S. Chang, Y.K. Su, R.W. Chuang, W.C. Lai, C.H. Kuo, Y.P. Hsu, Y.C. Lin, S.C. Shei, H.M. Lo, J.C. Ke, and J.K. Sheu, “Nitride-based LEDs with an SPS tunneling contact layer and an ITO transparent contact,” IEEE Photon. Tech. Lett., vol. 16, no. 4, pp.1002–1004, 2004.
[33] T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,” Appl. Phys. Lett., vol. 71, pp. 2472–2474, 1997.
[34] H.Y. Ryu, H S. Kim, and J.I. Shim, “Rate equation analysis of efficiency droop in InGaN light emitting diodes”, Appl. Phys. Lett., vol. 95, pp.081114-1-3, 2009.
Chapter 4 references
[1] S. Nakamura, T. Mukai, and M. Senoh, "Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes," Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[2] S. J. Chang, W. C. Lai, Y. K. Su, J. F Chen, C. H Liu, and U. H Liaw " InGaN/GaN multiquantum well blue and green light emitting diodes," IEEE J. Sel. Top. Quantum Electron., vol.8, pp. 278-283, 2002.
[3] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J.R. Chen, and J. M. Tsai, "400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes," IEEE J. Sel. Top. Quantum Electron, vol.8, pp. 744-748, 2002.
[4] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. MMukai, "Ultra-high efficiency white light emitting diodes," Jpn. J. Appl. Phys., vol.45, pp. L1084-L1086, 2006.
[5] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys, vol.34, pp. L797-L799, 1995.
[6] T. Mukai, S. Nagahama, M. Sano, T. Yanamoto, D. Morita, T. Mitani, Y. Narukawa, S. Yamamoto, I. Niki, M. Yamada, S. Sonobe, S. Shioji, K. Deguchi, T. Naitou, H. Tamaki, Y. Murazaki, and M. Kameshima, “Recent progress of nitride-based light-emitting devices,” Status Solid A, vol.200, pp. 52-57, 2003.
[7] J. K. Kim, T. Gessmann, and E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park,“GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett., vol.88, pp. 013501-013501-3, 2006.
[8] Y.L. Li, E. F. Schubert, J. W. Graff, A. Osinsky, and W. F. Schaff, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol.76, pp. 2728-2730, 2000.
[9] N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Kranes, “Blue-emitting InGaN–GaN double- heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A∕ cm2,” Appl. Phys. Lett., vol.91, 243506-243506-3, 2007.
[10] R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, " Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices.", Semicond. Sci. Technol., vol.27, pp. 024001-024001-14, 2012.
[11] J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett. , vol.97, pp. 111105-111105-3, 2010.
[12] J. Zhang and N. Tansu, "Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes", J. Appl. Phys., vol.110, pp.113110-113110-5, 2011.
[13] H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and Characteristics of Staggered InGaN Quantum Well Light-Emitting Diodes in the Green Spectral Regimes,” IET Optoelectronics, vol. 3, pp. 283-295, 2009.
[14] G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography“, Nanoscale Res. Lett., vol.6, pp.1556-1556-6,2011.
[15] H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett., vol.98, pp. 151115-151115-3, 2011.
[16] C. H. Lu, C. C. Lan, Y. L. Lai, Y. L. Li, and C. P. Liu, “Enhancement of Green Emission from InGaN/GaN Multiple Quantum Wells via Coupling to Surface Plasmons in a Two-Dimensional Silver Arra “, Advanced Functional Materials, vol.21, pp. 4719-4723, 2011.
[17] H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. W. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,“ Appl. Phys. Lett., vol. 96, pp. 101102-101102-3, 2010.
[18] H. Zhao, G. Liu, R. A. Arif, and N. Tansu “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes, “ Solid-State Electronics, vol.54, pp.1119-1124, 2010.
[19] Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nano-Patterned AGOG Sapphire Substrate by Abbreviated Growth Mode,” IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1066-1072, 2009.
[20] Y. K. Eea, X. H. Li, J. Biserb, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth, vol. 312, pp. 1311-1315, 2010.
[21] Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett., vol.98, pp.151102-151102-3, 2011.
[22] E. Rangel, E. Matioli, Y. S. Choi, C.Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett., vol.98, pp. 081104-081104-3, 2011.
[23] J. J. Wierer, J, A. David and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency“ Nature Photonics, vol.3, pp. 163-169, 2009.
[24] X. H. Li, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light Extraction Efficiency and Radiation Patterns of III-Nitride Light-Emitting Diodes with Colloidal Microlens Arrays with Various Aspect Ratios,” IEEE Photonics Journal, vol. 3, pp. 489-499, 2011.
[25] Y.K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu “ Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures“ Optics Express, vol.17, pp. 13747-13757, 2009.
[26] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys., vol.38, pp.3976-3978, 1999.
[27] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. ,vol.3, pp.160-162, 2007.
[28] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes”, Appl. Phys. Lett., vol.91, pp.183507-1-3 , 2007.
[29] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes”, Appl.Phys. Lett. ,vol.91, pp.231114-1-3 2007.
[30] I. V. Rozhansky and D. A. Zakheim,“Analysis of dependence of electroluminescence efficiency of AlInGaN LED heterostructures on pumping,” Phys. Status Solidi C, vol.3,pp. 2160-2163, 2006.
[31] I. V. Rozhansky and D. A. Zakheim,“Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A, vol.204, pp.227-230, 2007.
[32] Y. C. Shen, G. O. Müller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames,“Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.,vol.91, pp.141101-1-3, 2007.
[33] N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames,“Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200,” Appl. Phys. Lett., vol.91, pp.243506-1-3, 2007.
[34] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Yu.T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 40, 605.2006.
[35] A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun,S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M.Steranka, “Performance of high-power AlInGaN light emitting diodes,” Phys. Status Solidi A ,vol.188, pp.15 ,2001.
[36] S. F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H.Okumurac, H. Nakanishi, T. Sota, and T. Mukai, “Optical and structural studies in InGaN quantum well structure laser diodes,” J. Vac. Sci. Technol. B19, pp.2177-2180, 2001.
[37] J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett., vol.92, pp.261103-1-3, 2008.
[38] K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J.Appl. Phys., vol.10 , pp. 033104-1-3, 2007.
[39] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W.C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-Based LEDs With an SPS Tunneling Contact Layer and an ITO Transparent Contact,” IEEE Photonics Technol. Lett., vol.16, pp.1002- 1004, 2004.
[40] M. I. Richard, M. J. Highland, T. T. Fister, A. Munkholm, J. Mei, S. K. Streiffer, C. Thompson, P. H. Fuoss, and G. B. Stephenson, “In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN,” Appl. Phys. Let.t, vol. 96, pp.051911-051911-3, (2010).
[41] B. J. Spencer, P. W. Voorhees, and J. Tersoff, “Morphological instability theory for strained alloy film growth: The effect of compositional stresses and species-dependent surface mobilities on ripple formation during epitaxial film deposition,” Phys. Rev. B, vol.64, pp.235318-1-4, 2001.
[42] X. H. Wu, C. R. Elsass, A. Abare, M. Mack, S. Keller, P. M. Petroff, S. P. DenBaars, J. S. Speck, and S. J. Rosner, “Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells,”Appl. Phys. Lett., vol.72, pp.692-694, 1998.
[43] H. K. Cho, J. Y. Lee, G. M. Yang, C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett., vol.79, pp. 215-217, 2001.
[44] N. Sharma, P. Thomas, D. Tricker, C. Humphreys, “Chemical mapping and formation of V-defects in InGaN multiple quantum wells,”Appl. Phys. Lett., vol.77, pp.1274-1276, 2000.
[45] E. L. Piner, M. K. Behbehani, N. A. El-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,”Appl. Phys. Lett., vol.70, pp.461-463, 1997.
[46] S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh, D. S. Lee, D. Lu, D. V. Christini, L. Liu, E. A. Armour, “Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition,” J. Appl. Phys., vol.94, pp. 1461-1467, 2003.
[47] J. W. Ju, H. S. Kim, L. W. Jang, J. H. Baek, D. C. Shin and I. H. Lee, “A well protection layer as a novel pathway to increase indium composition: a route towards green emission from a blue InGaN/GaN multiple quantum well,” Nanotechnology, vol.18, pp.295402, 2007.
[48] P. M. F. J. Costa1, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham2, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In-rich InGaN/GaN quantum well structures,” Phys. Status Solidi A, vol.203, pp. 1729-1732, 2006.
[49] Y. L. Hu, R. M. Farrell, C. J. Neufeld, M. Iza, S. C. Cruz, N. Pfaff, D. Simeonov, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells,” Appl. Phys. Lett., vol.100, pp.161101-161101-4, 2012.
Chapter 5 references
[1] D. R. Williams, Sun Fact Sheet, NASA, 2004.
[2] SORCE Total Solar Irradiance, LISIRD, Laboratory for Atmospheric & Space Physics, the University of Colorado, 2009.
[3] ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, 2008.
[4] Luque A., & Hegedus, S. (Eds.). (2003). Handbook of photovoltaic science and engineering. West Sussex: John Wiley & Sons Ltd.
[5] Markvart, T., & Castaner, L. (Eds.). (2005). Solar cells: materials, manufacture and operation. Kidlington Oxford: Elsevier Ltd.
[6] K. Araki, M. Yamaguchi, T. Takamoto, E. Ikeda, T. Agui, H. Kurita, K. Takahashi and T. Unno, “Characteristics of GaAs-based concentrator cells,” Solar Energy Materials & Solar Cells, vol. 66, nos. 1-4, pp. 559-565, 2001.
[7] G. S. Kinsey, P. Hebert, K. E. Barbour, D. D. Krut, H. L. Cotal and R. A. Sherif, “Concentrator multijunction solar cell characteristics under variable intensity and temperature,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 6, pp.503-508, 2008.
[8] S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley & Sons, Danvers, MA, pp. 318-328, 2002.
[9] J. Nelson, The Physics of Solar Cells, Imperial College Press, London, pp. 99-113, 2003.
Chapter 6 references
[1] Markvart, T. (Ed.). Solar electricity. Chichester: John Wiley & Sons., 1994
[2] Chapin, D. M., Fueller, C. S., & Pearson G. L. 1954.
[3] DM Chapin, CS Fuller, GL Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., vol.25, pp.676-677, 1954.
[4] Wilson, G. Best research-cell efficiencies. Golden, CO: National Renewable Energy Laboratory., 2012.
[5] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., vol.91, pp. 132177-132177-3, 2007.
[6] O. Jani, C. Honsberg, A. Asghar , D. Nicoi, I. Ferguson, A. Doolittle and S. Kurtz, “Characterization and analysis of InGaN photovoltaic devices,”31st IEEE Photovoltaic Specialists Conf. ,pp.37-42, 2005.
[7] H. Hamzaoui, Bouazzi A. S. ,Rezig B , “Theoretical possibilities of InxGa1-xN tandem PV structures,”SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol.87, pp.595-603, 2005.
[8] X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, J. Li,“Simulation of In0.65Ga0.35N single-junction solar cell,”Jpn. J. Appl. Phys., vol.40, pp.7335-7338, 2007.
[9] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett., vol.93, pp.143502-143502-3, 2008.
[10] R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved conversion efficiency of GaN/InGaN thin-film solar cells,” IEEE Electron Device Lett., vol.30, pp.724-726, 2009.
[11] S. Pereira, M. R. Correia , E. Pereira, K. P. O’Donnell, C. Trager-Cowan, and F. Sweeney,“Compositional pulling effects in InxGa1-x/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study,” PHYSICAL REVIEW B, vol.64, pp.205311-205311-5, 2001.
[12] K. Hiramatsu, Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, RF. Davis, H. Tsuda, W Taki, N. Kuwano, K. Oki, MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH , vol.2, pp.U3-U12, 1997.
[13] S. Pereira, M.R. Correia, E. Pereira, K.P. ODonnell, E. Alves, A.D. Sequeira, N. Franco, I.M. Watson, C.J. Deatcher, “Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping,” Appl. Phys. Lett., vol.80, pp.3913-3915, 2002.
[14] K.W.J. Barnham, G.A. Duggan, “A new approach to high‐efficiency multi‐band‐gap solar cells,” Jpn. J. Appl. Phys., vol.67, pp.3490-3493, 1990.
[15] J. K. Sheu, C.C. Yang, S.J. Tu, H.K. Chang, M.L. Lee, W.C. Lai, L.C. Peng, ” Demonstration of GaN-Based Solar Cells With GaN/InGaN Superlattice Absorption Layers”, IEEE ELECTRON DEVICE LETTERS, vol.30, pp.225-227, 2009.
[16] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C. Ke, and J. K. Sheu, “Nitride-based LEDs with an SPS Tunneling contact layer and an ITO transparent contact,”IEEE PHOTONIC TECHNOLOGY LETTERS, vol.16, pp.1002-1004, 2004.
[17] S. M. Ting, J. C. Ramer, D. I. Florescu, V. N. Merai, B. E. Albert, A. Parekh D. S. Lee, D. Lu, D. V. Christini, L. Liu, and E. A. Armour, “Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition,”J. Appl. Phys., vol.94, pp.1461-1465, 2003.
[18] J.-W. Ju, H.-S. Kim, L.-W. Jang, J. H. Baek, D.-C. Shin, and I.-H. Lee, “A well protection layer as a novel pathway to increase indium composition: a route towards green emission from a blue InGaN/GaN multiple quantum well,” Nanotechnology , vol.18, pp.295402-1-4, 2007.
[19] P. M. F. J. Costa, R. Datta, M. J. Kappers, M. E. Vickers, C. J. Humphreys, D. M. Graham, P. Dawson, M. J. Godfrey, E. J. Thrush, and J. T. Mullins, “Misfit dislocations in In‐rich InGaN/GaN quantum well structures,” Phys. Status Solidi A, vol.203, pp.1729-1732, 2006.
[20] C.A. Tran, R.F. Karlicek Jr., M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M.G. Brown, J. Nering, I. Ferguson, R. Stall, Journal of Crystal Growth, vol.195, pp. 397-400, 1998.
[21] M. I. Richard, M. J. Highland, T. T. Fister, A. Munkholm, J. Mei, S. K. Streiffer, C. Thompson, P. H. Fuoss, and G. B. Stephenson, “In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN,” Appl. Phys. Lett., vol. 96, pp.051911-051911-3, 2010.
[22] B. J. Spencer, P. W. Voorhees, and J. Tersoff, “Morphological instability theory for strained alloy film growth: The effect of compositional stresses and species-dependent surface mobilities on ripple formation during epitaxial film deposition,” Phys. Rev. B, vol.64, pp.235318-1-4, 2001.
[23] M.T. Chu, W.Y. Liao, R.H. Horng, T.Y. Tsai, T.B. Wu, S.P. Liu, M.H. Wu, and Ray-Ming Lin, "Growth and Characterization of p-InGaN/i-InGaN/n-GaN Double-Heterojunction Solar Cells on Patterned Sapphire Substrates," IEEE ELECTRON DEVICE LETTERS, vol.32, pp.922-924, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw