進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2207201315062200
論文名稱(中文) 以有限元素法分析骨質疏鬆症病患因胸腰椎骨折接受減壓及固定手術治療之生物力學影響
論文名稱(英文) Finite Element Analysis of Biomechanics for Osteoporotic Thoracolumbar Vertebral Fracture after Decompression and Internal Fixation
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 黃友恒
研究生(英文) Yu-Heng Huang
學號 n66001090
學位類別 碩士
語文別 中文
論文頁數 140頁
口試委員 指導教授-胡宣德
指導教授-黃國淵
口試委員-郭青松
口試委員-方中
口試委員-賴啟銘
中文關鍵字 有限元素法  骨質疏鬆  減壓及固定手術  生物力學 
英文關鍵字 Finite Element Method  Osteoporosis  Decompression and Internal Fixation Surgery  Biomechanics 
學科別分類
中文摘要 面對世界人口快速老化,骨質疏鬆症已成為年長者骨骼健康的重大課題,而骨質疏鬆症病患發生椎體骨折的情況也日益增多,當椎體骨折時,如果碎骨壓迫神經與脊髓系統,在保守治療無效的狀況下,則需要以減壓手術方式舒緩神經壓迫的問題。
骨折的椎節已遭受破壞,若再執行減壓手術,脊椎將更加不穩定,因此必須搭配內固定手術,以維持脊椎的穩定度,而不同的手術方式,均有其相應的生物力學表現。
當今探討“骨質疏鬆症病患因胸腰椎骨折接受減壓手術治療”的分析領域並不廣泛,本研究之目的為當骨質疏鬆的病患發生椎體骨折時,探討各種減壓及固定手術之生物力學特性,其中以「前位減壓合併椎體置換及後位短節椎弓螺釘固定手術」、「後位椎板減壓手術」搭配「椎弓螺釘固定手術」或「PMMA骨水泥椎體灌注手術」作為主要之研究方向,期望藉由各種設定模式,分析其穩定性與生物力學行為,並提供具有可信度的參考。
本研究將操作電腦斷層掃描與有限元素法套裝軟體,建立完整的脊椎模型,取其胸椎第十節至腰椎第三節,接著設定腰椎第一節為骨折節,取該椎節中間二分之一的位置,將皮質骨與鬆質骨之材料參數弱化為十分之一,以模擬骨折的情形,進而將椎弓螺釘與椎體置換椎籠植入脊椎模型,最後觀察脊椎在伸展、前彎、側彎、扭轉等四種動作下,骨折節、椎間盤、椎弓螺釘系統與椎體置換椎籠之活動度與穩定度。
英文摘要 Facing the rapid aging of the population in the world, osteoporosis becomes an important issue for the bone health of elders. It’s more frequent that the vertebral fracture happened to the osteoporosis patients because of colliding or falling down. When the vertebral fracture happened, the bone fragments sometimes compress the nervous system or spinal cord. If the conservative treatment is failed, it needs to decompress the neural compression by surgery. Because the vertebra has been destroyed, if we perform the decompression surgery, the stability of the spine will be worse. Therefore, it must combine internal fixation to maintain the stability of the spine, and different surgical methods have the corresponding biomechanical performances.
The research about the fracture of osteoporotic thoracolumbar vertebrae after decompression and internal fixation is not widely studied. The purpose of this study is to explore the biomechanical behaviors of the decompression surgery in combination with various kinds of spinal surgeries for patients with osteoporotic thoracolumbar vertebral fractures and to analyze the postoperative stability. We adopt "Anterior vertebral body replacement surgery with posterior instrumentation", "Posterior laminectomy with short or long-segment posterior instrumentation" with or without "PMMA (Polymethylmethacrylate
)vertebroplasty" as the design of this study. We analyze the biomechanical behavior and explore the stability of the spine in the different surgical models to provide a valuable reference on surgery.
This study used the computed tomography and the finite element package software to create the model of the spine, and selected segments from T10 to L3. We supposed that L1 vertebra has a fracture and changed the material strength of middle half of L1 vertebral body by decreasing the elastic moduli to 10% of that of original cortical and cancellous bones to simulate the osteoporotic fracture condition. In addition we implanted the pedicle screws or vertebral body cage into the spinal models. To observe the stress distribution, stability, and relative rotation angles of the spine under extension, flexion, lateral bending and axial rotation.
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1有限元素法(Finite Element Method, FEM) 1
1.2骨質疏鬆症(Osteoporosis) 2
1.3骨折種類之定義 3
1.4骨水泥介紹 5
1.5減壓與內固定手術治療 6
1.6研究動機 8
1.7研究策略與目的 9
第二章 脊椎介紹 10
2.1脊椎結構與組成 10
2.2脊椎骨 12
2.3椎間盤 17
2.4小面關節(Facet Joint) 21
2.5韌帶 21
第三章 研究方法與材料 28
3.1建立模型 28
3.1-1有限元素法建立脊椎模型之介紹 28
3.1-2樣品取得與斷層掃描 30
3.1-3醫學影像處理 32
3.1-4建立有限元素模型 35
3.2手術裝置之模型建立 41
3.3收斂性分析 42
3.4骨折節模擬 49
3.5減壓與固定手術之模擬 50
3.6 邊界條件 56
3.6-1單位系統 56
3.6-2預載(Preload)與邊界條件 56
3.6-3運動加載 57
3.7材料與性質 60
第四章 結果分析 64
4.1分析方向 64
4.2圖表中各種代號定義 65
4.3相對轉角 66
4.3-1相對轉角定義 66
4.3-2相對轉角:椎體骨折與後位減壓 67
4.3-3相對轉角:後位減壓搭配不同固定方式 69
4.3-4相對轉角:後位減壓與固定搭配不同輔助方式 72
4.3-5相對轉角:前位減壓與固定 75
4.4最大von Mises應力 77
4.4-1 von Mises理論簡介[63] 77
4.4-2最大von Mises應力:椎體骨折與後位減壓 79
4.4-3最大von Mises應力:後位減壓搭配不同固定方式 81
4.4-4最大von Mises應力:後位減壓與固定搭配不同輔助方式 84
4.4-5最大von Mises應力:前位減壓與固定 94
4.5應變能密度 97
4.5-1應變能密度簡介[63] 97
4.5-2應變能密度:椎體骨折與後位減壓 98
4.5-3應變能密度:後位減壓搭配不同固定方式 100
4.5-4應變能密度:後位減壓與固定搭配不同輔助方式 103
4.5-5應變能密度:前位減壓與固定 107
第五章 結論與建議 110
5.1結論 110
5.2建議與未來展望 113
參考文獻 114
附錄A 「後位減壓與固定手術」比較表格 120
附錄B Abaqus input檔 123
參考文獻 [1] L. Mosekilde, The Effect of Modelling and Remodelling on Human Vertebral Body Architecture, Technology and Health Care 6, 287–297, 1998
[2] J. Homminga, H. Weinans, W. Gowin, D. Felsenberg, R. Huiskes. Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but Not the Vertebral Load Distribution. Spine Volume 26, Number 14, 1555-1511, 2001
[3] F. W. Holdsworth, Fractures, Dislocations, and Fracture-Dislocations of The Spine, Journal of Bone and Joint Surgery, vol. British 45 B, 1963.
[4] F. Denis, The 3 Column Spine and Its Significance in The Classification of Acute Thoracolumbar Spinal-Injuries, Spine, vol. 8, no. 8, pp. 817-831, 1983.
[5] 王喻璿,以有限元素法分析骨質疏鬆胸腰椎折經椎體整型術或後方脊內固定手術之生物力學影響,國立成功大學土木工程研究所,2012,碩士論文.
[6] 江清泉,骨科併案討論集,臺灣大學醫學院出版,2007
[7] J. Street, B. Lenehan, J. Albietz, P. Bishop, M. Dvorak, C. Fisher, Intraobserver and Interobserver Reliabilty of Measures of Kyphosis in Thoracolumbar Fractures, The Spine Journal, vol. 9, pp. 464-469, 2009.
[8] Prof. Dr. Ahmet Alanay, Spinal Disorders-Vertebral Fractures, http://www.ahmetalanay.com(2013/05/29)
[9] Yale Medical Group, Health Info-Laminectomy,
http://www.yalemedicalgroup.org (2013/05/29)
[10] General Surgical Company (India) PVT. LTD., Spinal Stabilization cum Fixation System, http://www.gescoindia.com (2013/05/29)
[11] H. Gray, Anatomy, descriptive and surgical: Random House Value Publishing, 1977.
[12] M. Nordin, and V. H. Frankel, Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins, 2001.
[13] P. W. Hitchon, J. C. Torner, S. F. Haddad et al., Management options in thoracolumbar burst fractures, Surgical Neurology, vol. 49, no. 6, pp. 619-626, Jun, 1998.
[14] M. J. Silva, C. Wang, T. M. Keaveny et al., Direct and Computed tomography Thickness Measurements of The Human, Lumbar Vertebral Shell and Endplate, Bone, vol. 15, no. 4, pp. 409-414, 2004.
[15] G. H. Bell, O. Dunbar, J. S. Beck et al., Variations in Strength of Vertebrae with Age and Their Relation to Osteoporosis, Calcified Tissue International, vol. 1:75, 1967.
[16] Strayer, Lumbar Spine Surgery - A Guide to Preoperative and Postoperative Patient Care, Barbara Schweize, 2009.
[17] R. D. Cook, Concepts and applications of finite element analysis: Wiley, 2001.
[18] R. N. Natarajan, and G. B. J. Andersson, Modeling The Annular Incision in a Herniated Lumbar Intervertebral Disk to Study Its Effect on Disk Stability, Computers & Structures, vol. 64, no. 5-6, pp. 1291-1297, Sep, 1997.
[19] A. A. White, and M. M. Panjabi, Clinical biomechanics of the spine: Lippincott, 1990.
[20] A. Polikeit, S. J. Ferguson, L. P. Nolte et al., Factors Influencing Stresses in the Lumbar Spine after the Insertion of Intervertebral Cages: Finite Element Analysis, European Spine Journal, vol. 12, no. 4, pp. 413-420, Aug, 2003.
[21] M. A. Adams, and W. C. Hutton, The Effect of Posture on the Role of the Apophysea L Joints in Resisting Interverterral Compressive Forces, Journal of Bone and Joint Surgery-British Volume, vol. 62, no. 3, pp. 358-362, 1980.
[22] M. Sharma, N. A. Langrana, and J. Rodriguez, Role of Ligaments and Facets in Lumbar Spinal Stability, Spine, vol. 20, no. 8, pp. 887-900, Apr, 1995.
[23] M. Sharma, N. A. Langrana, and J. Rodriguez, Modeling of facet articu- lation as a nonlinear moving contact problem: Sensitivity study on lumbar facet response, Journal of Biomechanical Engineering-Transactions of the Asme, vol. 120, no. 1, pp. 118-125, Feb, 1998.
[24] A. Polikeit, Finite Element Analyses of the Lumbar Spine : Clinical Applications, 2002.
[25] J. Chazal, A. Tanguy, M. Bourges et al., Biomechanical Properties of Spinal Ligaments and a Histological Study of the Supraspinal Ligament in Traction, Journal of Biomechanics, vol. 18, no. 3, pp. 167-176, 1985.
[26] A. Shiraziadl, A. M. Ahmed, and S. C. Shrivastava, A Finite-Element Study of a Lumbar Motion Segment Subjected to Pure Sagittal Plane Moments, Journal of Biomechanics, vol. 19, no. 4, pp. 331-350, 1986.
[27] H. C. K. Naira, Computational Analysis of The Time-Dependent Bio- mechanical Behavior of The Lumbar Spine, 2004.
[28] M. J. G. Ruiz, and L. Y. S. Gonzalez, Comparison of Hyperelastic Material Models in the Analysis of Fabrics, International Journal of Clothing Science and Technology, vol. 18, no. 5, pp. 314-325, 2006.
[29] Abaqus 6.11 Documentation, http://abaqus.ethz.ch:2080/v6.11/
[30] G. Denoziere, Numerical Modeling of A Ligamentous Lumbar Motion Segment, pp. 55-2, 2004.
[31] F. Galbusera, Biomechanics of the C5-C6 Spinal Unit Before and After Placement of a disc prosthesis, pp.254, 2006.
[32] H. Chen, A Finite Element study of the Biomechanical Behavior of the Nonlinear Ligamentous Thoracic and Lumbar Spine, 2007.
[33] H. Agus, C. Kayali, and M. Arslantas, Nonoperative Treatment of Burst-type Thoracolumbar Vertebra Fractures: Clinical and Radiological Results of 29 Patients, European Spine Journal, vol. 14, no. 6, pp. 536-540, Aug, 2005.
[34] K. Wood, G. Butterman, A. Mehbod et al., Operative Compared with Nonoperative Treatment of A Thoracolumbar Burst Fracture without Neurological Deficit - A Prospective, Randomized Study, Journal of Bone and Joint Surgery-American Volume, vol. 85A, no. 5, pp. 773-781, May, 2003.
[35] P. Tropiano, R. C. Huang, C. A. Louis et al., Functional and Radiographic Outcome of Thoracolumbar and Lumbar Burst Fractures Managed by closed Orthopaedic Reduction and Casting, Spine, vol. 28, no. 21, pp. 2459-2465, Nov, 2003.
[36] M. Tezer, R. E. Erturer, C. Ozturk et al., Conservative Treatment of Fractures of The Thoracolumbar Spine, International Orthopaedics, vol. 29, no. 2, pp. 78-82, Apr, 2005.
[37] M. Alvis. CT scan of T12 Burst fracture, http://www.mikealvis.com- /examplecases /thoracicburstfracture.html.
[38] C. Boyter. Spinal Compression Fractures, http://69.8.250.19/spinal com- pression fractures.
[39] Y. Cotrel, and Dubousset, A New Technic for Segmental Spinal Osteosynthesis Using The Posterior Approach, vol. 70, no. 6, pp. 489-494, 1984.
[40] J. J. Yue, A. Sossan, C. Selgrath et al., The Treatment of Unstable Thoracic Spine Fractures with Transpedicular Screw Instrumentation: A 3-year consecutive series, Spine, vol. 27, no. 24, pp. 2782-2787, Dec, 2002.


[41] J. Glaser, M. Stanley, H. Sayre et al., A 10-year follow-up Evaluation of Lumbar Spine Fusion with Pedicle Screw Fixation, Spine, vol. 28, no. 13, pp. 1390-1395, Jul, 2003.
[42] I. Yamamoto, M. M. Panjabi, T. Crisco et al., 3-Dimensional Movements of The Whole Lumbar Spine and Lumbosacral Joint, Spine, vol. 14, no. 11, pp. 1256-1260, Nov, 1989.
[43] G. Shin, Viscoelastic Responses of The Lumbar Spine During Prolonged Stooping, 2005.
[44] R. K. Wilcox, D. J. Allen, R. M. Hall et al., A Dynamic Investigation of The Burst Fracture Process Using A Combined Experimental and Finite Element Approach, European Spine Journal, vol. 13, no. 6, pp. 481-488, Oct, 2004.
[45] T. X. Qiu, L. X. Guo, and E. C. Teo, Prediction of Biomechanical Characte- ristics of Intact and Injured Lower Thoracic Spine Segment Under Different Loads, Journal of Musculoskeletal Research, vol. 8, no. 2-3, pp. 87-99, 2004.
[46] W. K. Wang, C. K. Cheng, J. P. Wang et al., Finite Element Analysis of Fixation Methods of Thoracolumbar Burst Fracture, Master Thesis, 2005.
[47] D. C. Markel, and G. P. Graziano, A Comparison Study of Treatment of Thoracolumbar Fractures Using the Ace Posterior Segmental Fixator and Cotrel-Dubousset Instrumentation, Orthopedics, vol. 18, no. 7, pp. 679-686, Jul, 1995.
[48] S. I. Esses, Evaluation of Surgical Treatment for Burst Fracture, 1989.
[49] W. T. Yang, A Biomechanical Study of The Unilateral Intermediate Screw in The Short Segment Pedicular Fixation for Unstable Thoracolumbar Burst Fracture, 2007.
[50] E. Serin, L. Karakurt, Yilmaz. et al., Effects of Two-Levels,Four-Levels, and Four-Levels plus Offset-Hook Posterior Fixation Techniques on Protecting The Surgical Correction of Unstable Thoracolumbar Vertebral Fractures: A Clinical Study, European Journal of Orthopaedic Surgery &Traumatology, vol. 14, no. 1-6, 2004.
[51] A. L. Carl, S. G. Tromanhauser, and D. J. Roger, Pedicle Screw Instrumen- tation for Thoracolumbar Burst Fractures and Fracture-Dislocations, vol. 17, 1992.
[52] T. Pitzen, F. H. Geisler, D. Matthis et al., The Influence of Cancellous Bone Density on Load Sharing in Human Lumbar Spine: a Comparison Between An Intact and A Surgically Altered Motion Segment, European Spine Journal, vol. 10, no. 1, pp. 23-29, Feb, 2001.
[53] C. Hirsch, The Reaction of Intervertebral Discs to Compression Forces, J. Bone Joint Surg., vol. 37A, no. 1188, 1955.
[54] G. Baroud, J. Nemes, P. Heini et al., Load Shift of the Intervertebral Disc After a Vertebroplasty: A Finite-Element Study, European Spine Journal, vol. 12, no. 4, pp. 421-426, Aug, 2003.
[55] P. W. Hitchon, M. D. Brenton, T. Serhan et al., In Vitro Biomechanical Studies of An Anterior Thoracolumbar Implant, Journal of Spinal Disorders & Techniques, vol. 15, no. 5, pp. 350-354, Oct, 2002.
[56] K. Sairyo, V. K. Goel, A. Masuda et al., Three-Dimensional Finite Element Analysis of The Pediatric Lumbar Spine. Part I: pathomechanism of apophyseal bony ring fracture, European Spine Journal, vol. 15, no. 6, pp. 923-929, Jun, 2006.
[57] R. Eberlein, G. A. Holzapfel, and C. A. J. Schulze-Bauer, An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies, Comput Meth Biomech Biomed Eng, vol. 4, pp. 209-230, 2001.
[58] A. Rohlmann, N. K. Burra, T. Zander et al., Comparison of the Effects of Bilateral Posterior Dynamic and Rigid Fixation Devices on the Loads in the Lumbar Spine: a Finite Element Analysis, European Spine Journal, vol. 16, no. 8, pp. 1223-1231, Aug, 2007.
[59] V. K. Goel, H. Park, and W. Z. Kong, Investigation of Vibration Characteristics of The Ligamentous Lumbar Spine Using The Finite-Element Approach, Journal of Biomechanical Engineering- Transactions of the Asme, vol. 116, no. 4, pp. 377-383, Nov, 1994.
[60] K. L. Markolf, Deformation of Thoracolumbar Interve- Rtebral Joints in Response to External Loads –Biomech- Chanical Study Using Autopsy material, Journal of Bone and Joint Surgery-American Volume, vol. A 54, no. 3, pp. 511-&, 1972.
[61] G. Baroud, J. Nemes, P. Heini, and T. Steffen, Load Shift of The Intervertebral - Disc after A Vertebroplasty : A Finite-Element Study, European Spine Journal, 2003, 12(4), 421-426
[62] A. Glema, T. Lodygowski, W. Kakol, M. Wierszycki, and M. B. Ogurkowska: 'Modeling of intervertebral discs in the numerical analysis of spinal segment', ECCOMAS, 2004, 24-28.
[63] 劉啟台,細說材料力學[理論與題型剖析] ,博研出版社,2008
[64] W. Z. Kong and V. K. Goel, Ability of The Finite Element Models to Predict Response of The Human Spine to Sinusoidal Vertical Vibration. SPINE Vol.28, No.17, pp.1961-1967, 2003.
[65] Dassault Systemes Simulia Corp.,最新Abaqus實務入門,全華圖書股份有限公司,2013。
[66] 謝牧鄰,以CT斷層掃描影像為基礎之脊椎有限元素分析,國立成功大學土木工程研究所,2005,碩士論文.
[67] 林柏君,電腦輔助腰椎之有限元素分析,國立成功大學土木工程研究所,2006,碩士論文.
[68] 陳政雄,韌帶非線性之胸腰椎有限元素分析,國立成功大學土木工程研究所,2007,碩士論文.
[69] 林冠瑋,電腦輔助脊椎之有限元素分析,國立成功大學土木工程研究所,2008,碩士論文.
[70] 劉哲榮,後方腰椎間融合手術後應力重新分配之有限元素分析,國立成功大學土木工程研究所,2009,碩士論文.
[71] 郭青松,以有限元素模型處理方法為基礎之腰薦椎生物力學分析,國立成功大學土木工程研究所,2010,博士論文.
[72] 楊瑷菁,椎弓斷裂之脊椎滑脫對鄰近節影響之有限元素分析,國立成功大學土木工程研究所,2010,碩士論文.
[73] 陳科詮,以有限元素分析脊椎改良系統對腰椎鄰近節之生物力學影響, 國立成功大學土木工程研究所,2010,碩士論文.
[74] 蔡卓軒,以有限元素法分析胸腰椎爆裂性骨折經後方脊椎內固定手術後對生物力學之影響,國立成功大學土木工程研究所,2011,碩士論文.
[75] 趙逸民,以有限元素法腰薦椎解離性滑脫後對脊椎生物力學之影響,國立成功大學土木工程研究所,2011,碩士論文.
[76] 古宗達,以有限元素法分析輕度解離性腰薦椎滑脫經後方內固定手術之脊椎生物力學影響,國立成功大學土木工程研究所,2012,碩士論文.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw