進階搜尋


下載電子全文  
系統識別號 U0026-2207201305355300
論文名稱(中文) 6061-T6鋁合金在高溫撞擊下之塑變行為與差排結構分析
論文名稱(英文) Deformation behaviour and dislocation substructure of 6061-T6 aluminum alloy subjected to high temperature impact loading
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 唐子超
研究生(英文) Zih-Chao Tang
學號 n16004674
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 指導教授-李偉賢
口試委員-黃永茂
口試委員-王俊志
中文關鍵字 霍普金森桿  6061-T6  高溫  應變速率  差排  疊差缺陷  魏氏組織  疊差缺陷能 
英文關鍵字 Hopkinson bar  6061-T6 aluminum alloy  high temperature  strain rate  dislocation  stacking fault  Widmanstatten structure  stacking fault energy 
學科別分類
中文摘要 本研究乃對於6061-T6鋁合金垂直於滾軋板材方向(Transverse) 於高溫及高應變速率下之不同溫度、不同應變速率荷載下之巨觀機械性質及微觀結構變化之分析與討論。主要利用霍普金森高速撞擊試驗機及高溫加熱裝置,材料於100 ℃、200 ℃與350 ℃,及應變速率分別為1000 s^(-1)、3000 s^(-1)與5000 s^(-1)條件下進行高速撞擊,以探討溫度及應變速率相對於材料之塑變行為及微觀結構之影響。
結果顯示,相同溫度條件,其塑流應力值、加工硬化率及應變速率敏感性係數均隨應變速率增加而增加,而熱活化體積則會下降。反之,相同應變速率條件下,其塑流應力值、加工硬化率及應變速率敏感性係數均隨溫度增加而下降,而熱活化體積則會上升。此外,可以藉由Zerilli-Armstrong構成方程式,準確描述此合金在不同溫度及應變速率下的動態塑變行為。
微觀結果方面,由光學式顯微鏡之觀測可知6061-T6合金於高溫高應變速率下有再結晶的出現且晶粒組織形貌也有所改變,而晶粒細化與再結晶為材料於高溫、高應變速率下強度改變的原因。而在穿透式電子顯微鏡下則可觀察到差排密度隨著應變速率上升而增加,隨溫度上升而減少,且可於高溫低應變速率時發現疊差缺陷與魏氏組織的產生。再藉由差排密度、差排環尺寸、塑流應力值、應變速率敏感性係數及熱活化體積之連結並導入Modified Hall-Petch relationship,解析巨觀機械性質與微觀結構之相依性。最後導入疊差缺陷能公式,對微觀結構變化作一完整說明。
英文摘要 In this study, the effect of temperature and strain rate on plastic deformation and microstructure of 6061-T6 aluminum with Transverse direction is evaluated. A split Hopkinson pressure bar tester is utilized to investigate the macro-mechanical properties and microstructural variation of the specimens under high strain-rate loadings over wide temperature range. The specimens are deformed at 100 ℃, 200 ℃ and 350 ℃ under the strain rates of 1000 s^(-1), 3000 s^(-1) and 5000 s^(-1).
The experimental results indicate that the mechanical properties are related to temperature, strain rate and strain. At a constant temperature, plastic stress, work hardening rate and strain rate sensitivity all increase with the increasing strain rate, while the thermal activation volume decreases. However, at a constant strain rate, plastic stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, while the thermal activation volume increases. A Zerilli-Armstrong constitutive equation is used to predict flow behavior under different temperatures and strain rates.
OM observation results indicate that the morphology of deformed grain and recrystallization varied with strain rate and temperature. Moreover, grain refinement and recrystallization are observed of influencing largely intensity at high temperature and high strain rate. TEM microstructure observations reveal that the dislocation density increases with the increasing strain rate, but decreases with the increasing temperature. In addition, stacking defects and Widmanstatten structure generate at high temperature and low strain rate. The higher dislocation density prompts a reduction in the dislocation cell size. The relationship between flow shear, grain size and dislocation cell can be described by a modified Hall-Petch equation. Furthermore, the effect of grain size on the stacking fault energy is also evaluated.
論文目次 1 中文摘要 I
2 ABSTRACT II
3 誌謝 III
4 總目錄 IV
5 表目錄 VII
6圖目錄 VIII
7 符號說明 XV
8第一章 前言 1
9第二章 理論與文獻回顧 3
2-1 鋁合金之介紹 3
2-2 6061-T6鋁合金之介紹 5
2-3 塑性變形之機械測試類別 5
2-4一維波傳理論 7
2-5霍普金森撞擊試驗機之理論基礎 9
2-6材料塑性變形行為 11
2-7材料構成方程式 15
10第三章 實驗方法及步驟 25
3-1實驗流程 25
3-2實驗儀器與設備 25
3-2-1動態機械性質測試系統:霍普金森撞擊試驗機 25
3-2-2光學顯微鏡(OM) 27
3-2-3穿透式電子顯微鏡(TEM) 28
3-2-4雙噴式電解拋光機 28
3-2-5低速切割機 28
3-2-6加熱裝置 29
3-3實驗步驟 29
3-3-1實驗試件製備 29
3-3-2動態衝擊實驗 29
3-3-3試件金相之觀察(OM) 31
3-3-4 TEM試片製備 31
11第四章 實驗結果與討論 34
4-1應力-應變曲線 34
4-2加工硬化率 35
4-3應變速率效應 36
4-4熱活化體積 37
4-5活化能 38
4-6 溫度效應 39
4-7理論溫升量 40
4-8材料組構方程式 41
4-9 OM金相組織觀察 42
4-10 TEM微觀結構分析 43
12第五章 結論 114
13參考文獻 117
參考文獻 1. F. Grong and O. T. Midling, “A process model for friction stir welding of age hardening aluminum alloys”, Metallurgical and Materials Transactions A, Vol. 32A, pp. 2001-1189, 2000.
2. Z. A. Hamid and M. T. A. Elkhair, “Development of electroless nickel–phosphorous composite deposits for wear resistance of 6061 aluminum alloy”, Materials Letters, Vol. 57, pp. 720-726, 2002.
3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus and W.S. Miller, “Recent development in aluminum alloys for aerospace applications”, Materials Science and Engineering, Vol.280, pp. 102-107, 2000.
4. N. P. Wasekar, N. Ravi, P. S. Babu and L. R. Krishna and G. Sundararajan, “High-cycle fatigue behavior of microarc oxidation coatings deposited on a 6061-T6 Al Alloy”, Metallurgical and Materials Transactions A, Vol.41(1), pp. 255-265, 2010.
5. H. Kolsky “An investigation of the mechanical properties of materials at very high rates of loading” Proceeding of the Physical Society, Vol. 62, pp. 676-699, 1949.
6. F. E. Hauser, “Techniques for measuring stress-strain relations at high strain rates”, Experimental Mechanics, Vol. 6, pp. 395-406, 1966.
7. A. J. Holzer and R. H. Brown, “Mechanical behaviors of metals in dynamic compression”, Journal of Engineering Materials and Technology, Vol. 101, pp. 238-247, 1979.
8. S. N. Nasser and J. B. Isaacs, “Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys”, Acta Materialia. Vol. 45(3), pp. 907-919, 1997.
9. K. A. Hartleya, J. Duffya and R. H. Hawley, “Measurement of the temperature profile during shear band formation in steels deforming at high strain rates”, Journal of the Mechanics and Physics of Solids, Vol. 35(3), pp. 283-301, 1987.
10. S. C. Bergsma, M. E. Kassner, X. Li and M. A. Wall, "Strengthening in the new aluminum alloy AA 6069". Materials Science and Engineering: A, Vol. 254(1), pp. 112-118, 1998.
11. R. Braun, "Effect of thermal exposure on the microstructure, tensile properties and the corrosion behaviour of 6061 aluminium alloy sheet", Materials and Corrosion, Vol. 56(3), pp. 159-165, 2005.
12. R. R. Ambriz, G. Barrera, R. Garcia and V. H. Lopez, "A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA)". Materials & Design, Vol. 30(7), pp. 2446-2453, 2009.
13. F. J. MacMaster, K. S. Chan, S. C. Bergsma and M. E. Kassner, "Aluminum alloy 6069 part II: fracture toughness of 6061-T6 and 6069-T6". Materials Science and Engineering: A, Vol. 289(1), pp. 54-59, 2000.
14. G. M. D. Almaraz, V. H. M. Lemus and J. J. V. Lopez, "Rotating bending fatigue tests for aluminum alloy 6061-T6, close to elastic limit and with artificial pitting holes". Procedia Engineering,. Vol. 2(1), pp. 805-813. 2010.
15. J. C. Huang, C. S. Shin and S. L. I. Chan, “Effect of temper, specimen orientation and test temperature on tensile and fatigue properties of wrought and PM AA6061-alloys”. International Journal of Fatigue, Vol. 26(7), pp. 691-703, 2004.
16. E. A. Starke, Jr and J. T. Staley, “Application of modern aluminum alloys to aircraft”, Progress in Aerospace Sciences, Vol. 32, pp. 131-172, 1996.
17. F. Augereau, D. Laux, L. Allais, M. Mottot and C. Caes, “Ultrasonic measurement of anisotropy and temperature dependence of elastic parameters by a dry coupling method applied to a 6061-T6 alloy”, Ultrasonics, Vol. 46, pp. 34-41, 2007.
18. P. K. Kumar, Dr. K. Kishore and Prof. P. Laxminarayana, “Prediction of thrust force and torque in drilling on aluminum 6061-T6 alloy”, International Journal of Engineering Research & Technology, Vol. 2(3), 2013.
19. D. R. Curran, L. Seaman and D. A. Shockey, “Linking dynamic fracture to microstructural process, shock wave and high-strain-rate phenomena in metal: concepts and applications”, pp. 22-26, 1980.
20. U. S. Lindholm, “Measurement of mechanical properties, techniques of metals research, Vol. 5, Part I, edited by R. F. Bunshah”, Interscience Publisher, Inc., New York, pp. 199-271, 1971.
21. U. S. Lindholm and L. W. Yeakly, “High strain-rate tension and compression”, Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
22. W. S. Lee and C. F. Lin, “Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures”, Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998.
23. J. D. Campbell, “Dynamic plasticity: macroscopic and microscopic aspects”, Materials Science and Engineering A, Vol. 12, pp. 3-21, 1973.
24. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd international conference on the strength of metals and alloys, Vol. III, ASM, pp. 951, 1970.
25. J. D. Campbell and W. G. Ferguson, “The temperature and strain-rate dependence of the shear strength of mild steel”, Philosophical magazine, Vol. 21, pp. 63-82, 1970.
26. A. Seeger, “Dislocation and mechanical properties of crystals”, Philosophical magazine, Vol. 46, pp. 1194-1217, 1955.
27. H. Conrad, “Thermally activated deformation of metals”, Journal of Metal, pp. 582-588, 1964.
28. M. A. Meyers, D. J. Benson, O. Vo¨hringer, B. K. Kad, Q. Xue and H. H. Fu, “Constitutive description of dynamic deformation: physically-based mechanisms”, Materials Science and Engineering, Vol. 322, pp. 194–216, 2002.
29. W. G. Ferguson, A. Kumar and J. E. Dorn, “Viscous drag on dislocations in aluminum at high strain rates”, Acta Metallurgica , Vol. 16, pp. 1189-1197, 1968.
30. U. S. Lindholm and L. M. Yeakly, “Dynamic deformation of single and polycrystalline aluminum”, Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
31. J. D. Campbell and A. R. Dowling, “The behaviour of materials subjected to dynamic incremental shear loading”, J. Mech. Phys. Solids, Vol. 18, pp. 43-63, 1970.
32. D. C. Ludwigson, “ Modified stress-strain relation for FCC metals and alloys”, Metallurgical and Materials Transactions A, Vol. 2, pp. 2825-2828, 1971.
33. Z. Gronostajski, “The constitutive equations for FEM analysis”, Journal of. Material. Processing Technology, Vol. 106, pp. 40-44, 2000.
34. L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A basic approach for strain rate dependent energy conversion including heat transfer effects: an experimental and numerical study”, Journal of. Material. Processing Technology, Vol. 182, pp. 319-326, 2007.
35. R. W. Armstrong and F. J. Zerilli, “Dislocation mechanics aspects of plastic instability and shear banding”, Mechanics of Materials, Vol. 17, pp. 318-327, 1994.
36. F. J. Zerilli and R. W. Armstrong, “The effect of dislocation drag on the stress-strain behavior of F.C.C. metals”, Acta Metallurgica et Materialia, Vol. 40 (8), pp. 1803-1808, 1992.
37. D. Umbrello, R. M‘Saoubi and J. C. Outeiro, “The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel”, International Journal of Machine Tools and Manufacture, Vol. 47, pp. 462-470, 2007.
38. W. J. Kang, S. S. Cho, H. Huh and D.T. Chung, “Modified Johnson-Cook model for vehicle body crashworthiness simulation”, Special Issue, Vol. 21, Nos 4/5, pp. 424-435, 1999.
39. Y. C. Lin and X. M. Chen,“A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel”, Computational Materials Science, Vol. 49, pp. 628-633, 2010.
40. J. Zhang, D. C. Weckman and Y. Zhou, “Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd: YAG laser welds”, Welding Journal, January, Vol. 87, pp. 18-30, 2008.
41. L. E. MURR, G. LIU and J.C McCLURE, “A TEM study of precipitation and related microstructure in friction-stir welded 6061 aluminum”, Journal of Materials Science, Vol. 33, pp. 1243-1251, 1998.
42. W. S. Lee and T. H. Chen, “Dynamic Deformation Behavior and Microstructural Evolution of High-Strength Weldable Aluminum Scandium (Al-Sc) Alloy”, Materials Transactions, Vol. 49(6), pp. 1284-1293, 2008.
43. X. M. ZHANG, H. J. LI, H. Z. LI, H. GA, Z. G. GAO, Y. LIU and B. LIU, “Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar”, Transactions of Nonferrous Metals Society of China, Vol. 18, pp. 1-5, 2008.
44. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd and M. Finn, “High strain rate tensile testing of automotive aluminum alloy sheet”, International Journal of Impact Engineering, Vol. 32, pp. 541-560, 2005.
45. W. S. Lee and T. H. Chen, “Dynamic Mechanical Response and Microstructural Evolution of High Strength Aluminum–Scandium (Al–Sc) Alloy”, Materials Transactions, Vol. 47, No. 2, pp. 355-363, 2006.
46. S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd and W. J. Poole, “The Deformation Behaviour of AA6111 as a Function of Temperature and Precipitation State”, Materials Science and Engineering A , Vol. 319-321, pp. 461-465, December 2001.
47. B. Viguier, “Dislocation Densities and Strain Hardening Rate in Some Intermetallic Compounds”, Materials Science and Engineering A, Vol. 349, pp. 132-135, 2003.
48. D. CHU and J. W. MORRIS and Jr, M. A. “The Influence of Microstructure on Work Hardening in Aluminum”, Acta Materialia, Vol. 44(7), pp. 2599-2610, 1996.
49. P. Ludwick, Elementte der Technologischen Mechanik, Springer Verlag, Berlin, pp. 32, 1909.
50. L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel,” Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
51. C. S. PARK, M. H. KIM and C. LEE, “A theoretical approach for the thermal expansion behavior of the particulate reinforced aluminum matrix composite,” Journal of Materials Science, Vol. 36, pp. 3579-3587, 2001.
52. B. Dood and Y. Bai, “Ductile Fracture and Ductility”, Academic Press Inc., London, pp. 136, 1987.
53. H. T. Ding, N. G. Shen and Y. C. Shin, “Modeling of grain refinement in aluminum and copper subjected to cutting”, Computational Materials Science, Vol. 50, pp. 3016-3025, 2011.
54. F. E. Pfefferkorn, S. T. Lei, Y. G. Jeon and G. Haddad, “A metric for defining the energy efficiency of thermally assisted machining”, International Journal of Machine Tool & Manufacture. Vol. 49, pp. 357-365, 2009.
55. B.M. Corbett, “Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers”, International Journal of Impact Engineering, Vol. 33, pp. 431-440, 2006.
56. N. Souai, N. Bozzolo, L. Naze, Y. Chastel and R. Loge, “About the possibility of grain boundary engineering via hot-working in a nickel-base superalloy”, Scripta Materialia, Vol. 621, pp. 851-854, 2010.
57. D.J. Chakrabarti and D.E. Laughlin, “Phase relations and precipitation in Al–Mg–Si alloys with Cu additions”, Progress in Material Science, Vol. 49, pp. 389-410, 2004.
58. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain refinement of AZ31 and ZK60 Mg alloy-towards superplasticity studies”, Materials Science and Engineering A, Vol. 302A, pp. 56, 2001.
59. G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8, pp. 113. 73, 1996.
60. N. Fujita, R. Sahara, T. Narushima and C. Ouchi, “Austenitic Grain Growth behavior Immediately after Dynamic Recrystallization in HSLA Steels and Austenitic Stainless Steel”, ISIJ International, Vol. 48(10), pp. 1419–1428, 2008.
61. W. Jin, C. Jun, Z. Zhen and R. Xue-yu, “Dynamic Recrystallization Behavior of Microalloyed Forged Steel”, Journal of Iron and Steel Research, International, Vol. 15(3), pp. 78-81, 2008.
62. M. A. Meryers, Dynamic Behavior of Materials, John Wiley & Sons, pp. 420-426, 1994.
63. M. A Meryers, Mechanical Metallurgy Principles and Applications, Prentice-Hall, pp. 284-289, 1984.
64. F. Hamdi and S. Asgari, “Evaluation of the Role of Deformation Twinning in Work Hardening Behavior of Face-Centered-Cubic Polycrystals”, Metallurgical and Materials Transactions A, Vol. 39(2), pp. 294-303, 2008.
65. R. K. Ham, “The Determination of Dislocation Densities in Thin Films”, Philosophical Magazine, Vol. 6, pp. 1183-1184, 1961.
66. Y. Tomota, P. Lukas, S. Harjo, J-H. Park, N. Tsuchida and D. Neov, “In Situ Neutron Diffraction Study of IF and Ultra Low Carbon Steels upon Tensile Deformation”, Acta Materialia, Vol. 51, pp. 819-830, 2003.
67. P.M.G.P. Moreira, A.M.P. de Jesus, A.S. Ribeiro and P.M.S.T. de Castro, “Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminum alloy: A comparison”, Theoretical and Applied Fracture Mechanics, Vol. 50, pp. 81–91, 2008.
68. J. E. Bailey and P. B. Hirsch, "The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver". Philosophical Magazine, Vol. 5, pp. 485-497, 1960.
69. P. Trivedi, D. P. Field and H. Weiland, “Alloying Effects on Dislocation Substructure Evolution of Aluminum Alloys”, International Journal of Plasticity, Vol. 20, pp. 459-476, 2004.
70. S. L. WANG and L. E. MURR, “Effect of Prestrain and Stacking-Fault Energy on the Application of the Hall-Petch in fcc Metals and Alloys”, METALLOGRAPHY, Vol. 13, pp. 203-224, 1980.
71. J. Z. Lu, K. Y. Luoa, Y. K. Zhang, C. Y. Cui, G. F. Sun, J. Z. Zhou, L. Zhang, J. You, K. M. Chen and J. W. Zhong, “Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts”, Acta Materialia, Vol. 58, pp. 3984-3994, 2010.
72. V. S. Sarma, J. Wang, W. W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, Y. T. Zhu, “Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals”, Materials Science and Engineering A, Vol. 527, pp. 7624-7630, 2010.
73. D. H. Wei, J. Z. Zhou, S. Huang, Y. J. Fan and M. Wang, “Progress in Theory and Application Research on Microscale Laser Shock Peening”, Advanced Materials Research, Vol. 135, pp. 194-199, 2010.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw