系統識別號 U0026-2207201216364700
論文名稱(中文) 奈米流體力學之電動幫浦和離子空間效應
論文名稱(英文) Electrokinetic Pump and Steric Effect in Nanofluidics
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 100
學期 2
出版年 101
研究生(中文) 張益誌
研究生(英文) Yi-Chih Chang
學號 N96991500
學位類別 碩士
語文別 英文
論文頁數 94頁
口試委員 指導教授-楊瑞珍
中文關鍵字 電動能量轉換  電池和幫浦模式  離子大小效應  流量整流  電滲流幫浦 
英文關鍵字 Electrokinetic energy conversion efficiency  Generation and pumping mode  Steric effect  Flow rate rectification  Electroosmotic flow pumps 
中文摘要 將奈米流體應用於生物或化學微機電系統是相當具有潛力的領域。本論文將奈米流體與電動現象結合,針對電動能量轉換進行研究,依據驅動流體方式可分為壓力驅動(電池模式)和電場驅動(電幫浦模式)。
本論文第一部分針對考慮離子大小效應後的流體在奈米管道下之現象,更進一步地以理論解析方式探討在此影響下以壓力驅動的電池其能量轉換效率的表現。以考慮離子大小效應所修正後的波松-波茲曼公式可得知在奈米管道中離子傳輸行為,如streaming current、電滲流和電遷移分別貢獻的電導度。結果可發現考慮離子大小效應後能量轉換效率能隨著表面電荷增大而提高。更進一步地再將導電率常數修正為隨著離子強度增加或減少而降低或提高,同樣地以理論解析方式探討在此影響下以壓力驅動的電池其能量轉換效率的表現。經結果可得知轉換效率確實能提高,但仍有其限制條件。
英文摘要 Nanofluidics is considered to be a potentially important area in the fields of analytical biology and chemistry. This thesis focuses on nanofluidics and the associated electrokinetic phenomena. The scope of this thesis that covers electrokinetic energy conversion is segregated according to the method used to drive the channel of fluid: pressure-driven (generation mode) and electric-field-driven (pumping mode).
In the first part of this thesis, we focus on the fluidic behavior in the nanochannel when the finite size ions (steric effect) are considered, and present theoretical calculations to investigate the performance of the electrokinetic battery energy conversion efficiency by using the pressure-driven method. Based on the modified Poisson–Boltzmann equation, the theoretical model for electrokinetic energy conversion is proposed to address the ionic transport of the steric effect in the nanochannel, such as the streaming current and electrical conductance due to the electroosmotic flow and electromigration flow. The results show that the conversion efficiency increased because of the increased surface charge density when the steric effect is considered. Furthermore, the electrical conductivity changes from being constant to a variable, which increases/decreases because of the decreased/increased ionic strength. The results calculated from the theoretical model are shown to enhance the conversion efficiency. However, the model still has limits.
In the last part of this thesis, we focus on the conical nanopore membrane employed in electroosmotic flow pumps, and present numerical simulations to investigate the performance of the flow rate rectification (in short circuit condition) and electrokinetic pumping energy conversion efficiency by using the electric-field-driven method (in open circuit condition). In short circuit condition, the flow rate rectification shows that the rectification direction changes with application of forward/reverse bias. The rectification results depend on the concentration polarization that occurs at different places. In open circuit condition, we simulate the influence of the electrolyte concentration, applied bias, and nanopore radii parameters on the conversion efficiency of electroosmotic flow pumps. The result shows that the conical nanopore membrane electroosmotic flow pump exhibits a higher efficiency for reverse bias.
論文目次 中文摘要 I
Abstract II
誌 謝 IV
Nomenclature XI
Abbreviation XIII
Chapter 1 Introduction 1
1.1 Nanofluidics 1
1.2 Applications 1
1.3 Electrokinetics 4
1.4 Electrokinetic battery 5
1.5 Electroosmotic Flow pumping 9
1.6 Motivation 16
1.7 Structure of the thesis 17
Chapter 2 Theoretical Model 18
2.1 Modified Poisson-Boltzmann (PB) and Poisson-Nernst-Planck (PNP) model 18
2.2 Electrokinetic energy conversion 21
2.2.1 Maximum power generation 22
2.2.2 Maximum conversion efficiency 23
2.3 Numerical model 26
2.3.1 Governing equations 26
2.3.2 Computational domain and boundary conditions 29
Chapter 3 Steric Effect 32
3.1 Mathematical formulations 34
3.2 Mathematical model for ionic mobility 35
3.3 Finite difference method 39
3.4 Results and discussion 41
3.4.1 Steric effect 42
3.4.2 Ionic-strength-dependent ionic mobility 55
Chapter 4 Electroosmotic Pumps 65
4.1 Forward and reverse bias 66
4.2 Voltage flow rate characteristics 74
4.3 Electroosmotic pump energy conversion 82
Chapter 5 Conclusions 87
References 89
參考文獻 1. Eijkel JCT, van den Berg A, Nanofluidics: what is it and what can we expect from it? Microfluidics and Nanofluidics 1: 249-267, 2005.
2. Ventra D, Evoy MS, Heflin JR, Introduction to Nanoscale Science and Technology, Nanostructure Science and Technology, (Kluwer Academic, Boston). 2004.
3. Han J, in Introduction to Nanoscale Science and Technology, edited by M. Di Ventra, S. Evoy, and J. R. Heflin. (Kluwer Academic, Boston), 2004.
4. van Honschoten JW, Brunets N, Tas NR, Capillarity at the nanoscale. Chemical Society Reviews 39: 1096-1114, 2010.
5. Piner RD, Zhu J, Xu F, SeunghunHong, Mikin CA, "Dip-Pen" Nanolithography. Science 283: 661-663, 1999.
6. Ashkin A, Dziedzic JM, Yamane T, Optical trapping and manipulation of single cells using infrared laser beams. Nature 330: 769-771, 1987.
7. Smith SB, Finzi L, C. B, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258: 1122-1126, 1992.
8. Florin EL, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE, Sensing specific molecular interactions with the atomic force microscope. Biosensors and Bioelectronics 10: 895-901, 1995.
9. Persson F, Utko P, Reisner W, Larsen NB, Kristensen A, Confinement spectroscopy: Probing single DNA molecules with tapered nanochannels. Nano Letters 9: 1382-1385, 2009.
10. Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC, Sturm JC, Micro- and nanofluidics for DNA analysis. Analytical and Bioanalytical Chemistry 378: 1678-1692, 2004.
11. Zangle TA, Mani A, Santiago JG, Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chemical Society Reviews 39: 1014-1035, 2010.
12. Kim SM, Burns MA, Hasselbrink EF, Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Analytical Chemistry 78: 4779-4785, 2006.
13. Wang YC, Han J, Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab on a Chip 8: 392-394, 2008.
14. Salieb-Beugelaar GB, Teapal J, Nieuwkasteele Jv, Wijnperle´ Dl, Tegenfeldt JO, Lisdat F, Berg Avd, Eijkel JCT, Field-dependent DNA mobility in 20 nm high nanoslits. Nano Letters 8: 1785-1790, 2008.
15. Kim SJ, Han J, Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Analytical Chemistry 80: 3507-3511, 2008.
16. Wang Y-C, Stevens AL, Han J, 30 57 Million-fold Preconcentration of Proteins and Peptides by Nanofluidic Filter. Analytical Chemistry 77: 4293-4299, 2005.
17. Lee JH, Song YA, Han J, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab on a Chip 8: 596-601, 2008.
18. Lee JH, Song Y-A, Tannenbaum SR, Han J, Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Analytical Chemistry 80: 3198-3204, 2008.
19. Manz A, Graber N, Widmer HM, Miniaturized total chemical-analysis systems – a novel concept for chemical sensing. Sensors and Actuators B 1: 244-248, 1990.
20. Reyes DR, Iossifidis D, Auroux P-A, Manz A, Micro Total Analysis Systems. 1. Introduction theory and technology. Analytical Chemistry 74: 2623-2636, 2002.
21. Chow AW, Lab-on-a-Chip: Opportunities for Chemical Engineering. AIChE Journal 48: 1590-1595, 2002.
22. Huikko K, Kostiainen R, Kotiaho T, Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications. European Journal of Pharmaceutical Sciences 20: 149-171, 2003.
23. Gardeniers H, van den Berg A, Micro- and nanofluidic devices for environmental and biomedical applications. International Journal of Environmental Analytical Chemistry 84: 809-819, 2004.
24. Dittrich PS, Manz A, Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery 5: 210-218, 2006.
25. Mairhofer J, Roppert K, Ertl P, Microfluidic systems for pathogen sensing: a review. Sensors 9: 4804-4823, 2009.
26. Xuan X, Li D, Thermodynamic analysis of electrokinetic energy conversion. Journal of Power Sources 156: 677-684, 2006.
27. Chang CC, Yang RJ, Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluidics and Nanofluidics 9: 225-241, 2009.
28. Xuan X, Streaming potential and electroviscous effect in heterogeneous microchannels. Microfluidics and Nanofluidics 4: 457-462, 2007.
29. Osterle JF, Electrokinetic energy conversion. Journal of Applied Mechanics 31: 161-164, 1964.
30. Morrison FA, Osterle JF, Electrokinetic energy conversion in ultrafine capillaries. The Journal of Chemical Physics 43: 2111, 1965.
31. Yang J, Lu F, Kostiuk LW, Kwok DY, Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. Journal of Micromechanics Microengineering 13: 963–970, 2003.
32. Yang J, Lu F, Kostiuk LW, Kwok DY, Electrokinetic power generation via streaming potentials in microchannels: A mobile-ion-drain method to increase streaming [otentials. The 2004 Int Conf on MEMS, NANO and Smart Systems: 675–679, 2004.
33. Lu MC, Satyanarayana S, Karnik R, Majumdar A, Wang CC, A mechanical-electrokinetic battery using a nano-porous membrane. Journal of Micromechanics and Microengineering 16: 667-675, 2006.
34. Yang P, Szeri AJ, Majumdar A, Electrochemomechanical energy conversion in nanofluidic channels. Nano Letters 4: 2315–2321, 2004.
35. Daiguji H, Oka Y, Adachi T, Shirono K, Theoretical study on the efficiency of nanofluidic batteries. Electrochemistry Communications 8: 1796-1800, 2006.
36. Min JY, Hasselbrinkb EF, Kima SJ, On the efficiency of electrokinetic pumping of liquids through nanoscale channels. Sensors and Actuators B: Chemical 98: 368-377, 2004.
37. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C, Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Letters 6: 2232–2237, 2006.
38. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C, Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters 7: 1022–1025, 2007.
39. Stein D, Kruithof M, Dekker C, Surface-Charge-Governed Ion Transport in Nanofluidic Channels. Physical Review Letters 93: 035901, 2004.
40. Xie Y, Wang X, Xue J, Jin K, Chen L, Wang Y, Electric energy generation in single track-etched nanopores. Applied Physics Letters 93: 163116, 2008.
41. Eijkel J, Liquid slip in micro- and nanofluidics: recent research and its possible implications. Lab on a Chip 7: 299-301, 2007.
42. Davidson C, Xuan X, Electrokinetic energy conversion in slip nanochannels. Journal of Power Sources 179: 297-300, 2008.
43. Ren Y, Stein D, Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19: 195707, 2008.
44. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A, MEMS-based micropumps in drug delivery and biomedical applications. Sensors and Actuators B: Chemical 130: 917-942, 2008.
45. Wang P, Chen Z, Chang H-C, A new electro-osmotic pump based on silica monoliths. Sensors and Actuators B: Chemical 113: 500-509, 2006.
46. Shaorong L, Dasgupta PK, Flow-injection analysis in the capillary format using electroosmotic pumping. Analytica Chimica Acta 268: 1–6, 1992.
47. Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM, Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. Journal of Chromatography 593: 253–258, 1992.
48. Manz A, Effenhauser CS, Burggraf N, Harrison DJ, Seiler K, Fluri K, Electroosmotic pumping and electrophoretic separations for miniaturized chemical-analysis systems. Journal of Micromechanics Microengineering 4: 257–265, 1994.
49. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A, Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261: 895-897, 1993.
50. Jacobson SC, Hergenroder R, Koutny LB, Ramsey JM, Open-channel electrochromatography on a microchip. Analytical Chemistry 66: 2369–2373, 1994.
51. Iverson BD, Garimella SV, Recent advances in microscale pumping technologies: a review and evaluation. Microfluidics and Nanofluidics 5: 145-174, 2008.
52. Zeng S, Chen C, Mikkelsen Jr. JC, Santiago JG, Fabrication and characterization of Electroosmotic micropumps. Sensors and Actuators B: Chemical 79: 107-114, 2001.
53. Zeng S, Chen C-H, Santiago JG, Chen J-R, Zare RN, Tripp JA, Svec F, Fr´echet JMJ, Electroosmotic flow pumps with polymer frits. Sensors and Actuators B: Chemical 82: 209-212, 2002.
54. Reichmuth DS, Chirica GS, Kirby BJ, Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives. Sensors and Actuators B: Chemical 92: 37-43, 2003.
55. Chen C, Santiago JG, A Planar Electroosmotic Micropump. Journal of Microelectromechanical Systems 11: 672-683, 2002.
56. Laser DJ, Goodson KE, Santiago JG, Kenny TW, High-Frequency Actuation with Silicon Electroosmotic Micropumps. Solid-State Sensor, Actuator, and Microsystems Workshop (Hilton Head Island, SC), Proc. 2002.
57. Laser DJ, Myers AM, Yao S, Bell KF, Goodson KE, Silicon electroosmotic micropumps for IC thermal management. Proc Transducers ’03 (Boston, MA), 2003.
58. Svec F, Fréchet JMJ, Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Analytical Chemistry 64: 820–822, 1992.
59. Tripp JA, Svec F, Fréchet JMJ, Zeng S, Mikkelsen JC, Santiago JG, High-pressure electroosmotic pumps based on porous polymer monoliths. Sensors and Actuators B: Chemical 99: 66-73, 2004.
60. Chen Z, Wang P, Chang HC, An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Analytical and Bioanalytical Chemistry 382: 817-824, 2005.
61. Wang R, Zhang F, Yang B, Liang X, A Fast Way to Make a Monolithic Column for a High Pressure Electroosmotic Pump. Analytical Sciences 26: 921-923, 2010.
62. Gan WE, Yang L, He YZ, Zeng RH, Cervera ML, Guardia MDL, Mechanism of porous core electroosmotic pump flow injection system and its application to determination of chromium(VI) in waste-water. Talanta 51: 667–675, 2000.
63. Jiang L, Mikkelsen J, Koo JM, Huber D, Yao S, Zhang L, Zhou P, Maveety JG, Prasher R, Santiago JG, Kenny TW, Goodson KE, Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans Comp Pack Technol 25: 347–355, 2002.
64. Yao S, Hertzog DE, Zeng S, Mikkelsen Jr JC, Santiago JG, Porous glass electroosmotic pumps: design and experiments. Journal of Colloid and Interface Science 268: 143-153, 2003.
65. Yao S, Myers AM, Posner JD, Rose KA, Santiago JG, Electroosmotic Pumps Fabricated From Porous Silicon Membranes. Journal of Microelectromechanical Systems 15: 717-728, 2006.
66. Miao JY, Xu ZL, Zhang XY, Wang N, Yang ZY, Sheng P, Micropumps Based on the Enhanced Electroosmotic Effect of Aluminum Oxide Membranes. Advanced Materials 19: 4234-4237, 2007.
67. Chen YF, Li MC, Hu YH, Chang WJ, Wang CC, Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluidics and Nanofluidics 5: 235-244, 2007.
68. Ai Y, Yalcin SE, Gu D, Baysal O, Baumgart H, Qian S, Beskok A, A low-voltage nano-porous electroosmotic pump. Journal of Colloid and Interface Science 350: 465-470, 2010.
69. Itamar B, David A, Steric effect in electrolytes: a modified Poisson-Boltzmann equation. Physical Review Letters 79: 435-438, 1997.
70. Kilic M, Bazant M, Ajdari A, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical Review E 75: 021502, 2007.
71. Kilic M, Bazant M, Ajdari A, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Physical Review E 75: 021503, 2007.
72. Duan C, Majumdar A, Anomalous ion transport in 2-nm hydrophilic nanochannels. Nature Nanotechnology 5: 848-852, 2010.
73. Onsager L, Fuoss RM, Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. Journal of Physical Chemistry 36: 2689-2778, 1932.
74. Jarosˇ M, Vceláková K, Zusková I, Gas B, Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments. Electrophoresis 23: 2667–2677, 2002.
75. Baldessari F, Electrokinetics in nanochannels - Part I. Electric double layer overlap and channel-to-well equilibrium. Journal of Colloid and Interface Science 325: 526-538, 2008.
76. Skoog DA, Fundamentals of analytical chemistry. 8th edn, (Thomson-Brooks/Cole), 2004.
77. Cheng LJ, Guo LJ, Nanofluidic diodes. Chemical Society Reviews 39: 923-938, 2010.
78. Jin P, Mukaibo H, Horne LP, Bishop GW, Martin CR, Electroosmotic Flow Rectification in Pyramidal-Pore Mica Membranes. Journal of the American Chemical Society 132: 2118–2119, 2010.
79. Momotenko D, Cortes-Salazar F, Josserand J, Liu S, Shao Y, Girault HH, Ion current rectification and rectification inversion in conical nanopores: a perm-selective view. Physical Chemistry Chemical Physics 13: 5430-5440, 2011.
80. Probstein RF, Physicochemical Hydrodynamics, Buttersworth: Stoneham, MA, 1989.
81. Miller SA, Young VY, Martin CR, Electroosmotic Flow in Template-Prepared Carbon Nanotube Membranes. Journal of the American Chemical Society 123: 12335-12342, 2001.
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-31起公開。

  • 如您有疑問,請聯絡圖書館