進階搜尋


下載電子全文  
系統識別號 U0026-2207201010303500
論文名稱(中文) 應用廣義回歸類神經網路於 超音波馬達速度停滯區補償之研究
論文名稱(英文) Study of Ultrasonic Motor Speed Control with Dead Zone Compensation Using Generalized Regression Neural Network
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 98
學期 2
出版年 99
研究生(中文) 賴漢文
研究生(英文) Han-Wun Lai
學號 n9697104
學位類別 碩士
語文別 英文
論文頁數 70頁
口試委員 指導教授-陳添智
口試委員-林清一
口試委員-謝聰烈
口試委員-任才俊
中文關鍵字 超音波馬達  廣義回歸類神經網路  死區 
英文關鍵字 traveling-wave ultrasonic motors  general regression neural network  dead zone 
學科別分類
中文摘要 新型超音波馬達相較於一般電磁馬達有顯著的優點,如體積小、運轉安靜、可忽略磁場干擾、在低轉速時高轉矩、高保持轉矩、構造簡單…等等。因此在一些需要安靜的場合,如醫院、辦公室,或是容易受到電磁干擾的地方,如核磁共振設備,以及精密定位設備、照相機自動對焦系統、機械手臂,甚至是汽車工業、航太工業…等等。超音波馬達在應用上有越來越普遍的趨勢,而且超音波馬達的設計相當多樣化,因此超音波馬達在未來有著相當廣泛的應用前景。
但是新型超音波馬達應用於調相控制時會有死區的缺點產生,而且會隨著不同的驅動條件產生變化。其馬達參數易受溫度上升、驅動頻率、驅動電壓及兩相電壓之相位差等變數所影響。由此可知新型超音波馬達的特性複雜且高度非線性。為了能分析新型超音波馬達的特性及死區補償,本論文首先提出以廣義回歸類神經網路來識別新型超音波馬達特性,超音波馬達特性可分為線性與非線性部分,再依據所提出來的識別器,來設計補償器,以補償超音波馬達非線性部份,使超音波馬達在應用調相控制時,能呈現線性狀態。此時超音波馬達運轉時為線性狀態,而控制器則採用在工業上常用的PI控制器,使新型超音波馬達能維持良好的響應。
最後,藉著數位訊號處理器高運算功能、高訊號處理之特性,實現全數位化之超音波馬達控制系統。由模擬結果可以大致了解超音波馬達的特性曲線及補償後的響應,並由實驗結果可以顯示本論文所提出的控制方法可獲得良好的控制性能及高精確響應,驗證此系統在超音波馬達應用上有良好的實用性。
英文摘要 The novel traveling-wave ultrasonic motors (TWUSM) have more excellent performances than conventional electromagnetic motors. The merits of TWUSM are small volume, working quietly, no electromagnetic interferences, high torque at low speed, high holding torque, simple structure and so on. Therefore, the TWUSM has been used in many practical areas such as industrial, medical, robotic, and automotive applications.
However, the traveling-wave ultrasonic motor operating in adjustment phase has the drawback with dead zone area. Which may vary in different driving conditions. For this reason, the ultrasonic motor is complex and highly nonlinear. The motor parameters are time-varying with the temperature and motor drive operating conditions, such as driving frequency, supplied voltage and phase difference of two-phase voltages. In order to analyze compensate the dead zone of TWUSM, this thesis proposes a general regression neural network to identify the traveling-wave ultrasonic motor parameters, and reduce the dead zone effect in TWUSM. A PI speed controller commonly used in industry is adopted. For the new ultrasonic motor in this study.
From the simulation and experimental results, the superior performance for the TWUSM is presented. Furthermore, the results demonstrate the effectiveness of the proposed control scheme.
論文目次 摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Tables VI
List of Figures VII
Symbols X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Outline of this thesis 3
Chapter 2 Traveling-Wave Ultrasonic Motor 5
2.1 Theoretical Background of TWUSM 5
2.2 The Principle of TWUSM 7
2.3 The Piezoelectric Effect 9
2.4 Features of Traveling-Wave Ultrasonic Motor 10
Chapter 3 Identification of the TWUSM Model 13
3.1 The Principle of General Regression Neural Networks 13
3.2 Identification of the TWUSM model using GRNNs 16
3.3 Simulations Result 22
Chapter 4 Compensator and Control Design 25
4.1 Dead zone nonlinearity 25
4.2 Design of nonlinear inverse compensation using GRNNs 26
4.3 PI controller design 33
4.4 Reference Model Design 34
4.5 Simulation result 34
Chapter 5 Experimental Results 44
5.1 Digital Signal Processor 46
5.2 Motor Driving Circuit 49
5.2.1 Voltage-Controlled Oscillator 49
5.2.2 Voltage-controlled Phase Shifter 51
5.2.3 Power Amplifiers Circuit and Transformer 52
5.3 Experimental results 53
Chapter 6 Conclusions and Suggestions 65
6.1 Conclusions 65
6.2 Suggestions 66
References 67
Vita 70

參考文獻 [1]T. Sashida and T. Kenjo, An introduction to ultrasonic motors, Clarendon Press, Oxford, 1993.
[2]K. Uchino, “Piezoelectric Ultrasonic Motors: Overview,” Smart Materials and Structures, Vol. 7, pp. 273-285, 1998.
[3]T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Oxford University Press, New York, 1993.
[4]T. Senjyu, T. Kashiwagi , and K. Uezato, “ A Study on High Efficiency Drive of Ultrasonic Motors,” Electric Power Components and Systems, Vol. 29, pp. 179-189, 2001.
[5] Y. F. Peng and C. M. Lin, “Adaptive recurrent celebellar model articulation controller for linear ultrasonic motor with optimal learning rates,” Neurocomputing, Vol.70, No .16-18, pp .2626-2637, 2007.
[6] F. J. Lin, P. H. Shieh, Y. C. Hung, “An intelligent control for linear ultrasonic motor using interval type-2 fuzzy neural network,” IET Proc.-Electric Power Appl., Vol. 2 , No.1 , pp. 32-41, 2008.
[7] Y. Nakaqawa, A. Saito, and T. Maeno , “ Nonlinear dynamic analysis of traveling wave-type ultrasonic motors,” IEEE Trans. On Ultrason. , Ferroelectrics , and Ferq. Control, Vol.44, No.1 , pp. e581-e584, 2006.
[8] N. El Ghouti, Hybrid Modeling of a Traveling Wave Piezoelectric Motor, PhD Thesis, Dep. of Control Engineering, Aalborg University, Denmark, 2000.
[9] T. S. Glrnn, Mixed-Domain Performance Model of the Piezoelectric Traveling-Wave Motor and the Development of a Two-Sided Device, PhD, Massachusetts Institute of Technology, 2002.
[10] J. Y. Goulermas, H. B. Demuth, and O. D. Jesus, “Generalized regression neural networks with multiple-bandwidth sharing and hybrid optimization,” IEEE Transations. on Sys. , man, and Cyber, Vol.37, No. 6, pp. 1434-1445, 2007.
[11] Z. Q. Zhao and D. S. Huang, “ A mended hybrid learning algorithm for Radial basis function neural networks to improve generalization capability,” Applied Mathematical modeling, Vol.31,No7,pp.1271-1281, 2007.
[12] R. Rastko ˘Selmic´ and Frank L. Lewis “ Deadzone Compensation in Motion Control Systems Using Neural Networks,” IEEE Transactions on Automatic Control, Vol. 45, No. 4, April 2000.
[13] F. J. Lin, R. J. Wai, and Chun-Ming Hong, “ Identification and Control of Rotary Traveling-Wave Type Ultrasonic Motor Using Neural Networks”, IEEE Transations on Control System Technology, Vol. 9, No. 4, July 2001.
[14] F. Abdollahi, Student Member “Stable Identification of Nonlinear Systems Using Neural Networks: Theory and Experiments”, IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 4, August 2006.
[15] P. A. Juang and D. W. Gu, “Speed Control of a New Disc-Type Ultrasonic Motor by Using Current Controller,” IEEE Transactions on Power Electronics, Vol. 21, No. 1, January 2006.
[16] T. S. Glrnn, Mixed-Domain Performance Model of the Piezoelectric Traveling-Wave Motor and the Development of a Two-Sided Device, PhD, Massachusetts Institute of Technology, 2002.
[17] N. El Ghouti, Hybrid Modeling of a Traveling Wave Piezoelectric Motor, PhD Thesis, Dep. of Control Engineering, Aalborg University, Denmark, 2000.
[18] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, 1997.
[19] H. V. Barth, “Ultrasonic Driven motor,” IBM Technological Disclosure Bulletin 16, No.7, pp. 2263, December 1973.
[20] O. Vyshnevskyy, S. Kovalev, and W. Wischnewskiy,” A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 52, No. 11, November 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw