進階搜尋


下載電子全文  
系統識別號 U0026-2206202017523600
論文名稱(中文) 建築風力通風流場之雷諾數獨立性
論文名稱(英文) Reynolds number independence of cross-ventilation flow in an ensuite room
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 楊易達
研究生(英文) Yi-Da Yang
學號 N66074213
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 指導教授-賴啟銘
口試委員-張惠雲
口試委員-何清政
口試委員-王輔仁
口試委員-郭建源
中文關鍵字 風洞實驗  CFD  臥室通風  雷諾數獨立性  局部雷諾數 
英文關鍵字 wind tunnel test  CFD  ensuite room ventilation  Reynolds number independence  local Reynolds number 
學科別分類
中文摘要   近年來全球能源消耗嚴重,透過自然通風以減少能源需求成為節能的一大目標,為了確保通風性能如我們所預期,在開發新建物前進行風洞實驗及CFD模擬已日漸普遍;然而縮尺模型的通風模擬易受到大氣邊界層之限制,需仰賴雷諾數相似性(Reynolds number similarity)及雷諾數獨立性(Reynolds number independence)來完成研究任務。
  然而,根據目前國內外相關文獻之研究成果發現,室內通風研究在低雷諾數的情況下,雷諾數獨立性並不明顯,故本研究將利用台灣常見臥室空間配置之縮尺模型進行風洞實驗,將1/10及1/20縮尺模型之實驗結果無因次化,並與雷諾數作圖以探討雷諾數獨立性之趨勢。
  透過不同樓層的風洞實驗比較,我們發現單樓層的雷諾數獨立性相對明顯,並分別利用梯度風速及當樓層風速作為無因次之標準,討論兩者之間的差異。研究發現利用梯度風速作為無因次標準,能使單樓層的數據更趨穩定,因為梯度風速不易受地表粗糙度影響而產生變化。
  考慮到實驗數據的穩定度與CFD模擬的研究效率,我們將以單樓層作為CFD的研究對象,將實驗數據與模擬結果進行比對,以驗證CFD模擬的可靠度,進而利用CFD模擬更低雷諾數的情況,探討雷諾數獨立性之適用範圍。
  利用CFD模擬1/20縮尺模型之低雷諾數的研究發現,雷諾數獨立性在雷諾數高於200000時非常明顯,此外,藉由室內低風速區之風速值與二次流之流動路徑長,可計算該測點之局部雷諾數,當局部雷諾數高於20000時,雷諾數獨立性亦非常明顯,故欲以縮尺模型了解真實建築之通風性能,應該使整體雷諾數高於200000,且局部雷諾數高於20000。
英文摘要 Global energy consumption has been severe, and reducing energy demand through natural ventilation has become a significant energy conservation goal. To ensure that the ventilation performance is expected, it is increasingly common to conduct wind tunnel test and CFD simulations before developing new buildings. However, the scale model of the wind tunnel test is limited by the atmospheric boundary layer. Therefore, we need to use the Reynolds number similarity and the Reynolds number independence to complete the research.

However, according to the research results of relevant literature, it is found that in the case of low Reynolds number, the Reynolds number independence is not apparent. To know the trend of Reynolds number independence, we will use the 1/10 scale and 1/20 scale models, which are the standard ensuite room in Taiwan, to conduct wind tunnel test. Additionally, the data obtained from the wind tunnel test is compared with the CFD result to prove the CFD’s reliability. Then we use the CFD to simulate the lower Reynolds number to know the scope of application of the Reynolds number independence.

CFD result found that the Reynolds number independence is very obvious when the Reynolds number is higher than 200000. Furthermore, we can know the local Reynolds number by the measuring point wind speed value and the length of the secondary flow path. Reynolds number independence is very obvious when the local Reynolds number is higher than 20000.
論文目次 摘要............................................................i
Extended Abstract.....................................ii
致謝............................................................vi
目錄............................................................vii
表目錄........................................................viii
圖目錄........................................................ix
符號彙編....................................................xii
第一章 緒論...............................................1
1.1 研究背景與目的..................................1
1.2 文獻回顧..............................................4
1.3 本文架構..............................................7
第二章 研究方法........................................8
2.1 研究對象..............................................9
2.2 風洞實驗.............................................18
2.3 CFD模擬..............................................23
第三章 結果與討論....................................31
3.1 風洞實驗結果之分析...........................32
3.2 CFD模擬與實驗結果之比對................54
3.3 雷諾數獨立性(Reynolds number independence)之探討......57
第四章 結論與建議....................................63
4.1 結論......................................................63
4.2 建議......................................................64
參考文獻....................................................65
附錄............................................................68
參考文獻 [1]J. Cermak, M. Poreh, J. Peterka, and S. Ayad, "Wind tunnel investigations of natur," TRANSPORTATION ENGINEERING-ASCE, vol. 110, pp. 67-79, 1984.
[2]D. Contini, D. Cesari, A. Donateo, and A. G. Robins, "Effects of Reynolds number on stack plume trajectories simulated with small scale models in a wind tunnel," Journal of Wind Engineering and Industrial Aerodynamics, vol. 97, no. 9-10, pp. 468-474, 2009, doi: 10.1016/j.jweia.2009.07.007.
[3]UNEP, "UNEP 2015 Annual Report," 2015.
[4]K. J. Lomas, "Architectural design of an advanced naturally ventilated building form," Energy and Buildings, vol. 39, no. 2, pp. 166-181, 2007, doi: 10.1016/j.enbuild.2006.05.004.
[5]J. Hirunlabh, W. Kongduang, P. Namprakai, and J. Khedari, "Study of natural ventilation of houses by a metallic solar wall under tropical climate," Renewable Energy, vol. 18, pp. 109-119, 1998.
[6]L. C. Haw, O. Saadatian, M. Y. Sulaiman, S. Mat, and K. Sopian, "Empirical study of a wind-induced natural ventilation tower under hot and humid climatic conditions," Energy and Buildings, vol. 52, pp. 28-38, 2012, doi: 10.1016/j.enbuild.2012.05.016.
[7]B. Blocken, "50 years of Computational Wind Engineering: Past, present and future," Journal of Wind Engineering and Industrial Aerodynamics, vol. 129, pp. 69-102, 2014, doi: 10.1016/j.jweia.2014.03.008.
[8]W. H. Snyder, "Guideline For Fluid Modeling Of Atmospheric Diffusion," 1981.
[9]T. Stathopoulos, H. Wu, and C. Bedard, "Wind environment around buildings: A knowledge-based approach," 1992.
[10]B. Blocken, J. Carmeliet, and T. Stathopoulos, "CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow," Journal of Wind Engineering and Industrial Aerodynamics, vol. 95, no. 9-11, pp. 941-962, 2007, doi: 10.1016/j.jweia.2007.01.013.
[11]Q. Chen, "Ventilation performance prediction for buildings: A method overview and recent applications," Building and Environment, vol. 44, no. 4, pp. 848-858, 2009, doi: 10.1016/j.buildenv.2008.05.025.
[12]T. Kobayashi, M. Sandberg, H. Kotani, and L. Claesson, "Experimental investigation and CFD analysis of cross-ventilated flow through single room detached house model," Building and Environment, vol. 45, no. 12, pp. 2723-2734, 2010, doi: 10.1016/j.buildenv.2010.06.001.
[13]C. W. Tsang, K. C. S. Kwok, and P. A. Hitchcock, "Wind tunnel study of pedestrian level wind environment around tall buildings: Effects of building dimensions, separation and podium," Building and Environment, vol. 49, pp. 167-181, 2011, doi: 10.1016/j.buildenv.2011.08.014.
[14]T. v. Hooff and B. Blocken, "CFD evaluation of natural ventilation of indoor environments by the concentration decay method: CO2 gas dispersion from a semi-enclosed stadium," Building and Environment, vol. 61, pp. 1-17, 2013, doi: 10.1016/j.buildenv.2012.11.021.
[15]H. Montazeri and F. Montazeri, "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, vol. 118, pp. 502-520, 2018, doi: 10.1016/j.renene.2017.11.032.
[16]N. Benkari, I. Fazil, and A. Husain, "Design and Performance Comparison of Two Patterns of Wind-catcher for a Semi-enclosed Courtyard," International Journal of Mechanical Engineering and Robotics Research, pp. 396-400, 2017, doi: 10.18178/ijmerr.6.5.396-400.
[17]M. Shirzadi, Y. Tominaga, and P. A. Mirzaei, "Wind tunnel experiments on cross-ventilation flow of a generic sheltered building in urban areas," Building and Environment, vol. 158, pp. 60-72, 2019, doi: 10.1016/j.buildenv.2019.04.057.
[18]K. Kosutova, T. van Hooff, C. Vanderwel, B. Blocken, and J. Hensen, "Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and CFD simulations," Building and Environment, vol. 154, pp. 263-280, 2019, doi: 10.1016/j.buildenv.2019.03.019.
[19]J. Franke, A. Hellsten, K. H. Schlunzen, and B. Carissimo, "The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary," International Journal of Environment and Pollution, vol. 44, 2011, doi: 10.1504/ijep.2011.038443.
[20]A. Mochida, Y. Tominaga, and R. Yoshie, "AIJ Guideline for Practical Applications of CFD to Wind Environment around Buildings," 2007.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw