進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2206201815050400
論文名稱(中文) 分離廢鋰離子電池中有價金屬之研究
論文名稱(英文) Separation of Valuable Metals from Spent Li-ion Battery
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 葉子維
研究生(英文) Zi-Wei Yeh
學號 N46051156
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 指導教授-申永輝
口試委員-黃紀嚴
口試委員-楊其偉
口試委員-陳吉良
中文關鍵字 廢鋰離子電池  離子交換  樹脂  分離 
英文關鍵字 Spent Li-ion Battery  ion exchange  resin  separation 
學科別分類
中文摘要 隨3C產品及電動車市場蓬勃發展,鋰離子電池使用量也隨之提高,而在台灣尚未有專門處理此電池的資源化廠,因此本論文針對廢棄鋰離子電池中有價金屬Ni、Co、Li、Mn之分離進行研究,主要透過化學沉澱法搭配離子交換技術將其分離,以利後續高純度回收原料之生產。
由批次實驗結果進行擬合結果得知利用螯合型陽離子交換樹脂(IRC748)在等溫吸附過程其吸附反應符合Langmuir熱力學模型及Pseudo-second oder動力學模型,而樹脂對目標金屬的選擇性依序為Ni > Co > Mn > Li,並由等溫吸附曲線得知Co與Mn對IRC748樹脂吸附現象相似。
將浸漬液稀釋後調整至pH=2,以KMnO4作為沉澱劑使Mn氧化沉澱而分離,Mn分離率約為94%,後將液相部分以NaOH調整至pH=4,進料濃度約為2000 ppm並以固定流速通入填充IRC748樹脂之管柱進行離子交換反應,樹脂吸附進料液中親和力較高的Co、Ni,而Li則隨交換尾液排出並收集,操作至Co吸附飽和後,以固定流速通入脫附劑2N HCl將負載於IRC748樹脂上的Co、Ni脫附富集,後利用濃HCl將所得脫附液調整至8N HCl濃度,使Co形成陰離子錯合物,再以固定流速通入填充強鹼型陰離子交換樹脂(IRA900Cl)之管柱進行離子交換反應,樹脂吸附Co錯合物,Ni則隨交換尾液排出並收集,操作至Co錯合物吸附飽和後,再以流固定流速通入脫附劑2N H2SO4將負載於IRA900Cl樹脂的Co脫附富集,藉此達到將廢鋰離子電池中的有價金屬分離。
英文摘要 With the vigorous development of 3C products and the electric vehicle market, the use of lithium-ion batteries increases. Therefore, this thesis focuses on the separation of valuable metals Ni, Co, Li, and Mn from spent lithium-ion batteries. The chemical precipitation and ion exchange are the methods used in this study.
According to the research results, the adsorption isotherms of chelating cation exchange resin (IRC748) for Ni, Co, and Mn is consistent with Langmuir model. The adsorption kinetics follow the Pseudo-second order kinetic model. Due to the similar adsorption behavior of Co and Mn for IRC748 resin, Mn was separated first by selective precipitation using KMnO4 as a precipitant. The remaining liquid was passed through a column filled with IRC748 resin for ion exchange separation. The resin selectively adsorbed Co and Ni and Li was collected in the exchange tail. The loaded resin was eluted with 2N HCl, and the eluted liquid was acidified to 8N concentration of HCl. In this context, Co forms an anion complex and was adsorbed by a strong base anion resin (IRA900Cl). In this way, the valuable metals in the leaching solution Ni, Co, Li, and Mn are separated and recovered.
論文目次 摘要 I
致謝 VI
目錄 VII
表目錄 X
圖目錄 XII
第一章 緒論 1
1-1研究背景 1
1-2 研究目的 2
第二章 理論基礎與前人研究 3
2-1 鋰離子電池 3
2-1-1 電池基本原理 3
2-1-2 電池材料 4
2-1-3 電池循環壽命 5
2-2 廢棄鋰離子電池資源化 5
2-3 預處理 6
2-4 離子交換法 7
2-4-1 離子交換樹脂種類與特性 7
2-4-2 離子交換反應 13
2-4-3 離子交換管柱操作 15
2-5吸附理論 18
2-6吸附熱力學及動力學研究 19
2-6-1吸附熱力學 19
2-6-2吸附動力學 21
2-7 前人研究 23
2-7-1 Amberlite IRC748螯合型樹脂 23
2-7-2 鎳鈷回收 24
2-7-3 鈷錳回收 24
2-7-4 鎳錳回收 25
2-7-5 廢棄鋰離子電池回收 25
第三章 實驗材料與流程 27
3-1 實驗材料及設備 27
3-1-1 實驗材料 27
3-1-2 實驗設備 30
3-1-3 分析設備 31
3-2 實驗流程 32
3-3實驗方法及步驟 33
第四章 結果與討論 37
4-1 IRC748螯合型樹脂吸附動力學實驗 37
4-1-1吸附反應平衡時間 37
4-1-2吸附反應動力學模型 38
4-2 IRC748樹脂等溫吸附實驗 43
4-2-1等溫吸附曲線 43
4-2-2 吸附反應熱力學模型 44
4-3以IRC748樹脂管柱分離模擬浸漬液之有價金屬實驗 49
4-3-1 實驗pH值選擇 49
4-3-2分離有價金屬之流程制定 52
4-3-3以化學沉澱法分離錳 55
4-3-4 以離子交換法分離鋰 56
4-3-4-1以H+型樹脂分離 56
4-3-4-2 以Na+型樹脂分離 58
4-3-4-3 分離鋰之最佳操作條件 60
4-3-5 洗脫負載鈷與鎳之IRC748樹脂 61
4-4 以IRA900Cl樹脂分離模擬脫附液之鈷鎳 63
4-4-1 樹脂吸附批次實驗 64
4-4-2 以離子交換法分離鈷鎳 64
4-4-3分離鈷鎳之最佳操作條件 67
4-4-4 洗脫負載鈷之IRA900Cl樹脂 68
4-5 真實廢鋰離子電池浸漬液之有價金屬分離 69
4-5-1 浸漬液原料 69
4-5-2 浸漬液中分離錳 70
4-5-3 浸漬液中分離鋰 71
4-5-3-1 單柱操作 72
4-5-3-2 串柱操作 74
4-5-4 脫附液中分離鈷鎳 77
4-5-5 分離廢鋰離子電池有價金屬之流程設計 81
第五章 結論與建議 83
參考文獻 85

參考文獻 [1] 呂佩瑩,楊模樺, "鋰電池市場應用現況," 工業材料雜誌, p. 81, 2006.
[2] 馮芳瑞, "日本鋰電池回收現況(上)," 工研院世界材料網.
[3] 柯賢文, "鋰電池," 科學發展, no. 第482期, p. 50, 2013.
[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, no. 9, p. 3243, 2011.
[5] 許荏賓, "溶劑萃取分離廢二次鋰電池有價金屬," 環境工程與管理系, 朝陽科技大學, 2016年, 2016.
[6] 劉如熹, "鋰離子二次電池材料簡介," (in 繁體中文), 化學, vol. 57, no. 2, p. 149, 1999.
[7] 廖世傑, "動力電池正負極材料發展趨勢," 工研院材料世界網.
[8] 鄭如翔、黃炳照, "鋰離子電池正極材料之發展," 化工, no. 第58卷第5期, p. 10, 2011.
[9] 何昌祐, "鋰離子電池及電池電量介紹," Richtek Technology Corporation Application Note 立錡科技電子報, vol. AN024, 2014.
[10] 方聖予、曹申, "稀貴金屬火法純化暨資源化技術," 工業材料雜誌, no. 371, pp. 48-57, 2017.
[11] 李清華, "稀貴金屬濕法冶金資源化技術," 工業材料雜誌, no. 371, pp. 58-63, 2017.
[12] 蘇英源, 冶金學. 2000.
[13] T. D. Reynolds, Unit operations and processes in environmental engineering. 1982.
[14] 張文青, "分離分析化學," 華東理工大學出版社, pp. 157-183, 2007.
[15] 陸九芳, 李總成, and 包鐵竹, 分離過程化學. 淸華大學出版社, 1993.
[16] M. Luqman, Ion exchange technology I: theory and materials. Springer Science & Business Media, 2012.
[17] A. A. Zagorodni, Ion exchange materials: properties and applications. Elsevier, 2006.
[18] C. Harland, "Ion exchange, Theory and Practice, Royal Society of Chemisty, Thomas Graham House," The Science Park, Cambridge, UK, 1994.
[19] G. Schmuckler, "Chelating resins—their analytical properties and applications," Talanta, vol. 12, no. 3, pp. 281-290, 1965.
[20] 朱屯, "萃取與離子交換," ed: 冶金工業出版社, 2005.
[21] 陳穩如, "新型選擇性樹脂的製備及其重金屬分選之應用研究," 碩士, 材料及資源工程系碩士班, 國立臺北科技大學, 台北市, 2002.
[22] 謝佳頴, "以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究," 碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2012.
[23] 翁筱涵, "廢加氫脫硫觸媒中有價金屬之資源化研究," 碩士, 資源工程學系, 國立成功大學, 台南市, 2015.
[24] 丁桓如, 工业用水处理工程. 清华大学出版社有限公司, 2005.
[25] 曾柏豪, "以陰離子交換樹脂分離鎢、釩之研究," 碩士, 資源工程學系, 國立成功大學, 台南市, 2014.
[26] 施雅云, "廢脫硝觸媒中鉬及釩之資源化研究," 國立成功大學資源工程系研究所碩士論文, 2017.
[27] A. Da̧browski, Z. Hubicki, P. Podkościelny, and E. Robens, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method," Chemosphere, vol. 56, no. 2, pp. 91-106, 2004.
[28] R. R. Navarro, K. Tatsumi, K. Sumi, and M. Matsumura, "Role of anions on heavy metal sorption of a cellulose modified with poly (glycidyl methacrylate) and polyethyleneimine," Water research, vol. 35, no. 11, pp. 2724-2730, 2001.
[29] P. Ling et al., "Adsorption of divalent heavy metal ions onto IDA-chelating resins: simulation of physicochemical structures and elucidation of interaction mechanisms," Talanta, vol. 81, no. 1-2, pp. 424-432, 2010.
[30] A. M. Donia, A. A. Atia, H. El-Boraey, and D. H. Mabrouk, "Uptake studies of copper (II) on glycidyl methacrylate chelating resin containing Fe2O3 particles," Separation and purification technology, vol. 49, no. 1, pp. 64-70, 2006.
[31] A. A. Atia, A. M. Donia, and K. Z. Elwakeel, "Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups," Reactive and Functional Polymers, vol. 65, no. 3, pp. 267-275, 2005.
[32] W. J. Weber, Physicochemical processes for water quality control. Wiley Interscience, 1972.
[33] 王九思, 陳學民, 肖舉強, and 伏小勇, "水處理化學," ed: 北京, 化學工業出版社, 第 189-217 頁, 2002.
[34] 蕭因秀, "ITO蝕刻廢液中銦金屬吸附回收之研究," 碩士, 資源工程學系碩博士班, 國立成功大學, 台南市, 2009.
[35] I. Langmuir, "The constitution and fundamental properties of solids and liquids. Part I. Solids," Journal of the American chemical society, vol. 38, no. 11, pp. 2221-2295, 1916.
[36] P. N. Nomngongo, J. C. Ngila, T. A. M. Msagati, and B. Moodley, "Kinetics and Equilibrium Studies for the Removal of Cobalt, Manganese, and Silver in Ethanol using Dowex 50W-x8 Cation Exchange Resin," Separation Science and Technology, vol. 49, no. 12, pp. 1848-1859, 2014.
[37] B. H. Hameed, A. A. Ahmad, and N. Aziz, "Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash," Chemical Engineering Journal, vol. 133, no. 1-3, pp. 195-203, 2007.
[38] Y. S. Ho, J. C. Y. Ng, and G. McKay, "Removal of Lead(Ii) from Effluents by Sorption on Peat Using Second-Order Kinetics," Separation Science and Technology, vol. 36, no. 2, pp. 241-261, 2001.
[39] S. Azizian, "Kinetic models of sorption: a theoretical analysis," J Colloid Interface Sci, vol. 276, no. 1, pp. 47-52, Aug 1 2004.
[40] Z. Zainol and M. J. Nicol, "Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748," Hydrometallurgy, vol. 99, no. 3-4, pp. 175-180, 2009.
[41] K.-L. Chiu and W.-S. Chen, "Recovery and Separation of Valuable Metals from Cathode Materials of Spent Lithium-Ion Batteries (LIBs) by Ion Exchange," Science of Advanced Materials, vol. 9, no. 12, pp. 2155-2160, 2017.
[42] L.-C. Lin, J.-K. Li, and R.-S. Juang, "Removal of Cu(II) and Ni(II) from aqueous solutions using batch and fixed-bed ion exchange processes," Desalination, vol. 225, no. 1-3, pp. 249-259, 2008.
[43] F. D. Mendes and A. H. Martins, "Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption," International Journal of Mineral Processing, vol. 77, no. 1, pp. 53-63, 2005.
[44] A. Deepatana, J. A. Tang, and M. Valix, "Comparative study of chelating ion exchange resins for metal recovery from bioleaching of nickel laterite ores," Minerals Engineering, vol. 19, no. 12, pp. 1280-1289, 2006.
[45] A. Kholmogorov, O. Kononova, V. Patrushev, E. Mikhlina, Y. Kononov, and G. Pashkov, "Ion exchange purification of manganese sulphate solutions from cobalt," Hydrometallurgy, vol. 45, no. 3, pp. 261-269, 1997.
[46] S. P. Barik, G. Prabaharan, and L. Kumar, "Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study," Journal of Cleaner Production, vol. 147, pp. 37-43, 2017.
[47] O. Kononova et al., "Ion exchange recovery of nickel from manganese nitrate solutions," Hydrometallurgy, vol. 54, no. 2-3, pp. 107-115, 2000.
[48] R.-C. Wang, Y.-C. Lin, and S.-H. Wu, "A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries," Hydrometallurgy, vol. 99, no. 3-4, pp. 194-201, 2009.
[49] X. Chen, B. Xu, T. Zhou, D. Liu, H. Hu, and S. Fan, "Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries," Separation and Purification Technology, vol. 144, pp. 197-205, 2015.
[50] LENNTECH, "AMBERLITE IRC748."

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw