進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2206201715501900
論文名稱(中文) 爐渣顯熱熱回收與水噴流衝擊冷卻熱液動分析
論文名稱(英文) Thermal-Hydraulic Analysis of Slag Sensible Heat Recovery and Water Jet impingement Cooling
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 陳詡濙
研究生(英文) Hsu-Ying Chen
學號 N16044218
學位類別 碩士
語文別 中文
論文頁數 141頁
口試委員 指導教授-張錦裕
口試委員-陳寒濤
口試委員-呂金生
口試委員-林建南
中文關鍵字 爐渣  熱回收  衝擊噴流  熱傳  數值模擬 
英文關鍵字 Slag  Heat recovery  Impinging jet  Heat transfer  Numerical simulation 
學科別分類
中文摘要 鋼鐵製程中,對伴隨鐵水、鋼液產生具有極高熱能的爐渣,因能源環保議提而受到重視,此外,鋼鐵本身性質的提升也是製程中一直受到重視的部分,因此本研究針對爐渣熱回收與影響鋼鐵性質之噴流衝擊冷卻兩部分以數值模擬進行研究,第一部分為爐渣顯熱熱回收,第二部分水噴流衝擊冷卻。
爐渣顯熱熱回收目的是開發爐渣熱交換模擬工具,以中鋼規劃之造粒後的爐渣為對象,利用冷風進行熱交換,回收顯熱形成高溫熱風,可用於後端廢熱鍋爐產製蒸汽及發電。研究內容包含分析熱交換機制、建立熱傳模型,並設計出符合需求的熱交換器尺寸,再將研究成果開發成模擬工具,以作為後續熱回收系統設計之用。藉由粒徑0.5~5mm之爐渣於1~12m/s風速下的三維熱液動分析,找出爐渣顆粒粒徑平均熱對流係數和摩擦因子與雷諾數的關係式,即可開發爐渣暫態批次熱回收裝置之交談式VB (Visual Basic) 電腦輔助設計軟體,軟體中係以有限差分法求解一維暫態統御方程式。本軟體可預測於各種不同顆粒粒徑、進口風速下,於熱回收裝置內爐渣與空氣隨時間及位置之溫度分佈及其熱回收率等。
水噴流衝擊冷卻目的是提高鋼鐵的機械性質,因熱軋製程後晶粒的成長情況、尺寸大小及鋼鐵的平坦性是由鋼鐵的溫度分布及冷卻速率控制,所以為達到鋼鐵所需的機械性質,需以冷卻速率控制鋼鐵的相變態,而本研究透過數值模擬分析不同噴嘴流速之流場結構與熱傳現象,並利用實驗來驗證模擬結果。且結合熱固耦合分析,探討冷卻過程中不同熱傳係數分佈對平板之熱應力及變形量之影響。
英文摘要 In the steel process, with the molten iron and molten steel comes the extremely high heat energy slag. Because of the environmental protection issues, the slag is getting more seriously concern. In addition, the improvement of mechanical properties of the steel is also getting concern in the steel process. Therefore, this study used the numerical simulation to analyze the heat recovery of the slag and water jet impingement cooling. In the heat recovery of slag study, 3-D turbulent flow was analyzed with the inlet velocity form1 to 12 m/s for different particle size (0.5~5mm) and porosity(0.4 and 0.5). Based on the simulation results we obtained the correlation of Nusselt number and Friction factor with Reynolds number. Then, developed slag transient batch system heat recovery device of the computer-aided design software. In the software, we used the finite difference method to solve 1-D transient control equation. The software can be used to predict the heat recovery rate and the temperature distribution of air and slag in different particle size or inlet velocity. In the water jet impingement cooling study, we investigated the flow field and heat transfer phenomena of the water jets impingement on a hot steel plate. 2-D axisymmetric turbulent flow with volume of fluid (VOF) module was analyzed with the inlet velocity from 1 to 5 m/s for a nozzle diameter of 8 mm. Constant heat-flux condition was employed at the solid surface. Based on the simulation results we obtained the effect of different inlet velocity on heat transfer correlation, hydraulic jump radius. Comparison of simulation results with experiment data could also get the good agreement. Finally, we also used the numerical simulation to analyze the effect of the different distribution of heat transfer coefficient on the stress and deformation of steel plate.
論文目次 摘要 I
Abstract II
目錄 XIII
表目錄 XVI
圖目錄 XVII
符號說明 XXII
第一章、 緒論 1
1.1前言 1
1.2文獻回顧 3
1.3 研究目的 8
第二章、 理論分析 11
2.1爐渣顆粒三維熱液動分析 11
2.1.1三維物理模型 11
2.1.2三維模型之基本假設 12
2.1.3三維模型之統御方程式 12
2.1.4三維模型之邊界條件 16
2.1.5熱對流係數、紐賽數、雷諾數與摩擦因子之計算 17
2.2爐渣暫態批次熱回收一維模型 23
2.2.1一維模型之物理模型 23
2.2.2一維模型之基本假設 23
2.2.3一維模型之統御方程式 23
2.2.4一維模型之邊界條件 25
2.2.5 熱回收率之計算 26
2.3噴流冷卻熱液動分析 28
2.3.1物理模型 28
2.3.2 基本假設 28
2.3.3 統御方程式 28
2.3.4 邊界條件 31
2.3.5雷諾數、熱對流係數與紐賽數之計算 32
2.4平板熱應力分析 34
2.4.1物理模型 34
2.4.2 基本假設 34
2.4.3 統御方程式 34
2.4.4 邊界條件 37
第三章、 數值方法 41
3.1爐渣顆粒三維熱液動分析 41
3.1.1數值方法 41
3.1.2解題流程 42
3.1.3格點測試 42
3.2爐渣暫態批次熱回收一維模型 46
3.2.1數值方法 46
3.2.2解題流程 46
3.2.3格點測試 47
3.3噴流冷卻熱液動分析 49
3.3.1數值方法 49
3.3.2 解題流程 49
3.3.3格點測試 49
3.4平板熱應力分析 51
3.4.1數值方法 51
3.4.2 解題流程 51
3.4.3格點測試 52
第四章、 實驗設備與方法 54
4.1 噴流冷卻實驗介紹及設備 54
4.2 實驗步驟 55
第五章、 結果與討論 63
5.1爐渣顆粒三維熱液動分析 63
5.1.1 流場分析 63
5.1.2 壓降與熱對流係數分析 63
5.2爐渣暫態批次熱回收一維模型 76
5.2.1溫度分析 76
5.2.2熱交換量與熱回收率分析 76
5.2.3以實驗驗證本程式 77
5.2.4爐渣與鉻鋼珠比較 78
5.3噴流冷卻熱液動分析 90
5.3.1流場分析 90
5.3.2熱傳分析 91
5.3.3以實驗驗證模擬結果 92
5.4平板熱應力分析 108
5.4.1溫度場分析 108
5.4.2變形量分析 109
5.4.3應力場分析 109
第六章、 電腦輔設計軟體 127
第七章、 結論 135
參考文獻 137

參考文獻 Bisio, G., “Energy recovery from molten slag and exploitation of the recovered energy”, Energy, Vol.22, pp.501-509, 1997
[2] Purwanto, H. and Akiyama, T., “Hydrogen production from biogas using hot slag", International Journal of Hydrogen Energy, Vol.31, No.4, pp.491-495, 2006
[3] Barati, M., Esfahani, S. and Utigard, T. A., “Energy recovery from high temperature slags”, Energy, Vol.36, No.9, pp.5440-5449, 2011
[4] Shun, L., “Heat Recovery from BF Slag at home and abroad”, Ind Heating, Vol.38, No.5, pp.23-25, 2009
[5] Tetsuro, N., Hiroshi, N., Koichi, F. and Tsukio, I., “Heat recovery in dry granulation of molten blast furnace slag”, Energy Dev. Jpn.;(United States), Vol.5, No.3, 1983
[6] Sieverding, F., “Heat recovery by dry granulation of blast furnace slags”, Steel Times, Vol.208, No.7, pp.469-469, 1980
[7] Ind S. M., “Treatment of molten slags”, Japan patent, Vol.57086, 1982
[8] Yoshida, H., Nara, Y., Nakatani, G., Anzai, T. and Sato, H., “The technology of slag heat recovery at NKK”, Technical Research Center, NKK, Japan, 1984
[9] Pickering, S., Hay, N., Roylance, T. and Thomas, G., “New process for dry granulation and heat recovery from molten blast furnace slag”, Ironmaking and steelmaking, Vol.12, No.1, pp.14-20, 1985
[10] Liu, J. X., Yu, Q. B., Dou, C. X. and Li R., “Experimental Study on Heat Transfer Characteristics of Apparatus for Recovering the Waste Heat of Blast Furnace Slag”, Advanced Materials Research, Vol.97-101, pp.2343-2346, 2010
[11] Zhang, H., Wang, H., Zhu, X., Qiu, Y.-J., Li, K., Chen R. and Liao Q., “A review of waste heat recovery technologies towards molten slag in steel industry”, Applied Energy, Vol.112, pp.956-966, 2013
[12] Bey, O. and Eigenberger, G., “Gas flow and heat transfer through catalyst filled tubes”, International Journal of Thermal Sciences, Vol.40, No.2, pp.152-164, 2001
[13] Jakobsen, H. A., Lindborg, H. and Handeland, V., “A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed reactors”, Computers and Chemical Engineering, Vol.26, pp.333-357, 2002
[14] Nield, D. A. and Kuznetsov, A. V., “Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem”, International Journal of Heat and Mass Transfer, Vol.42, No.17, pp.3245-3252, 1999
[15] Khashan, S. A., Al-Amiri, A. M. and Al-Nimr, M. A., “Assessment of the local thermal non-equilibrium condition in developing forced convection flows through fluid-saturated porous tubes”, Applied Thermal Engineering, Vol.25, No.10, pp.1429-1445, 2005
[16] Sørensen, J. P. and Stewart, W. E., “Computation of forced convection in slow flow through ducts and packed beds—II velocity profile in a simple cubic array of spheres”, Chemical Engineering Science, Vol.29, No.3, pp.819-825, 1974
[17] Dalman, M. T., Merkin, J. H. and McGreavy, C., “Fluid flow and heat transfer past two spheres in a cylindrical tube”, Computers & Fluids, Vol.14, No.3, pp.267-281, 1986
[18] Lloyd, B. and Boehm, R., “Flow and heat transfer around a linear array of spheres”, Numerical Heat Transfer, Part A Applications, Vol.26, No.2, pp.237-252, 1994
[19] Calis, H. P. A., Nijenhuis, J., Paikert, B. C., Dautzenberg, F. M. and van den Bleek, C. M., “CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing”, Chemical Engineering Science, Vol.56, No.4, pp.1713-1720, 2001
[20] Nijemeisland, M. and Dixon, A. G., “Comparison of CFD simulations to experiment for convective heat transfer in a gas–solid fixed bed”, Chemical Engineering Journal, Vol.82, No.1–3, pp.231-246, 2001
[21] Tobis, J., “Modeling of the pressure drop in the packing of complex geometry”, Industrial & engineering chemistry research, Vol.41, No.10, pp.2552-2559, 2002
[22] Magnico, P., “Hydrodynamic and transport properties of packed beds in small tube-to-sphere diameter ratio: pore scale simulation using an Eulerian and a Lagrangian approach”, Chemical engineering science, Vol.58, No.22, pp.5005-5024, 2003
[23] Ergun, S., “Fluid flow through packed columns”, Chem. Eng. Prog., Vol.48, pp.89-94, 1952
[24] Romkes, S., Dautzenberg, F., Van den Bleek, C. and Calis, H., “CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio”, Chemical Engineering Journal, Vol.96, No.1, pp.3-13, 2003
[25] Guardo, A., Coussirat, M., Larrayoz, M., Recasens F. and Egusquiza E., “Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds”, Chemical Engineering Science, Vol.60, No.6, pp.1733-1742, 2005
[26] Jang, J.-Y. and Chiu, Y.-W., “3-D Transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed”, Applied Thermal Engineering, Vol.29, No.14, pp.2895-2903, 2009
[27] Martin, H., “Heat and mass transfer between impinging gas jets and solid surfaces”, Advances in heat transfer, Vol.13, pp.1-60, 1977
[28] Stevens, J. and Webb, B., “Local heat transfer coefficients under an axisymmetric, single-phase liquid jet”, ASME J. Heat Transfer, Vol.113, No.1, pp.71-78, 1991
[29] Liu, X., Lienhard, J. and Lombara, J., “Convective heat transfer by impingement of circular liquid jets”, Journal of heat transfer, Vol.113, No.3, pp.571-582, 1991
[30] Huang, L. and El-Genk, M. S., “Heat transfer of an impinging jet on a flat surface”, International Journal of Heat and Mass Transfer, Vol.37, No.13, pp.1915-1923, 1994
[31] Fitzgerald, J. and Garimella, S., “Flow field effects on heat transfer in confined jet impingement”, Journal of heat transfer, Vol.119, No.3, pp.630-632, 1997
[32] Baonga, J. B., Louahlia-Gualous, H. and Imbert, M., “Experimental study of the hydrodynamic and heat transfer of free liquid jet impinging a flat circular heated disk”, Applied Thermal Engineering, Vol.26, No.11, pp.1125-1138, 2006
[33] Choo, K. and Kim, S. J., “The influence of nozzle diameter on the circular hydraulic jump of liquid jet impingement”, Experimental Thermal and Fluid Science, Vol.72, pp.12-17, 2016
[34] Cho, M. J., Thomas, B. G. and Lee, P. J., “Three-dimensional numerical study of impinging water jets in runout table cooling processes”, Metallurgical and Materials Transactions B, Vol.39, No.4, pp.593-602, 2008
[35] Passandideh-Fard, M. and Khavari, M., “Numerical Simulation of the Impingement of a Vertical Liquid Jet on a Solid Surface”, 17th Annual (International) Conference on Mechanical Engineering, 2009
[36] Son, S., Son G., Park, I. and Lee, P., “Numerical study of flow and cooling characteristics of impinging liquid jets on a moving plate”, 2010 14th International Heat Transfer Conference, pp.555-562, 2010
[37] Seraj, M. and Gadala, M., “Numerical Investigation of an Impingement Flow due to a Free Surface Axisymmetric Long Water Jet”, ASME 2011 International Mechanical Engineering Congress and Exposition, pp.343-354, 2011
[38] Yang, Y.-T., Wang, Y.-H. and Hsu, J.-C., “Numerical thermal analysis and optimization of a water jet impingement cooling with VOF two-phase approach”, International Communications in Heat and Mass Transfer, Vol.68, pp.162-171, 2015
[39] Hosain, M. L., Fdhila, R. B. and Daneryd, A., “Heat transfer by liquid jets impinging on a hot flat surface”, Applied Energy, Vol.164, pp.934-943, 2016
[40] Levenspiel, O., “Engineering flow and heat exchange”, Springer, 2014
[41] 吳調源, “爐渣顯熱回收技術開發報告”,中鋼公司研究報告,2016
[42] Adeyanju, A. and Manohar, K., “Theoretical and experimental investigation of heat transfer in packed beds”, Research Journal of Applied Sciences, Vol.4, No.5, pp.166-177, 2009
[43] Anderson R., Bates L., Johnson E. and Morris J. F., “Packed bed thermal energy storage: A simplified experimentally validated model”, Journal of Energy Storage, Vol.4, pp.14-23, 2015
[44] Cascetta M., Cau G., Puddu P. and Serra F., “Numerical investigation of a packed bed thermal energy storage system with different heat transfer fluids”, Energy Procedia, Vol.45, pp.598-607, 2014
[45] Ismail K. and Stuginsky Jr R., “A parametric study on possible fixed bed models for pcm and sensible heat storage”, Applied Thermal Engineering, Vol.19, No.7, pp.757-788, 1999
[46] Kunii D. and Levenspiel O., “Fluidization engineering”, Elsevier, 2013
[47] Yang W.-C., “Handbook of fluidization and fluid-particle systems”, CRC press, 2003
[48] Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corporation, 1984
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw