進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2206201712212700
論文名稱(中文) 環境因子對茶葉及有機廢棄物堆肥化學成份的影響
論文名稱(英文) Relationships between ambient environmental factors on the chemical compositions of tea leaves and organic waste composts
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 105
學期 2
出版年 106
研究生(中文) 張正達
研究生(英文) Jan-Da Chang
學號 L48971059
學位類別 博士
語文別 中文
論文頁數 202頁
口試委員 指導教授-游鎮烽
口試委員-饒瑞鈞
口試委員-楊懷仁
口試委員-何恭算
口試委員-謝英宗
中文關鍵字 鍶同位素  硼同位素  微量分析  發芽率  茶葉溯源  堆肥  pH 
英文關鍵字 Tea leaves  Sr and B isotopic composition  composting  germination  pH 
學科別分類
中文摘要 茶葉近年來漸漸成為人們所喜愛之飲品,由於其含有人體所需之礦物質及維生素,故喝茶被認為是有益健康的,且茶葉中所含重金屬濃度與健康有直接的關係,因此受到人們格外的重視。根據農委會統計全臺茶葉生產量為14405公噸/年,而全臺茶葉需求量45957公噸/年,因此茶葉68.7%需仰賴進口,也因而造成境外茶混充在地茶的情形日趨嚴重,所以如何以科學的方法鑑別茶葉產地亦是一項重要的議題。
第一章;茶葉化學組成與茶樹生長環境有密切關係,茶樹生長需藉由吸收土壤中的水分及礦物質,因此土壤組成將直接影響茶葉化學組成的變化,植物因吸收不同土壤、肥料、地下水或天水,其所含特徵元素亦不盡相同。因此釐清環境差異對茶葉中元素影響的變化,是有助於茶葉溯源機制之建立。而在釐清環境影響前需進行幾項評估:
(1)臺灣茶葉中元素分布情形。
(2)影響茶葉元素分布之環境因子為何?
(3)影響87Sr/86Sr、δ11B在植物體分化的因子為何?
為有效評估上述問題,本研究經由自然的樣品及實驗室控制實驗來評估茶葉中元素分布情形,及不同國家與產地元素分布的差異,並分析鍶、硼同位素在植物體分化的情形。
另外探討有機廢棄物堆肥,食品廢棄物(市場下腳品、廚餘)、綠色廢棄物(落葉、雜草)為臺灣主要有機固體廢棄物,食物垃圾及綠色廢棄物各佔都市固體廢棄物總重之40%及1.6%(Taiwan EPA Statistics, 2015),「堆肥」(Compost)是藉由堆肥化過程產生的穩定產物,是常見的處理廚餘及綠色廢棄物方法。部分人認為有機廢棄物含有高單位的重金屬及鹽分將其運用於作物上,擔心可能導致農作物重金屬蓄積(Hargreaves et al., 2008)。為瞭解臺南市有機廢棄物是否造成農作物重金屬蓄積,必須先針對下列幾項進行評估:
(1)臺南市有機堆肥中其主要元素及微量元素分布情形。
(2)不同的原物料元素分布差異及其來源。
(3)不同的堆肥方式其元素分布情形。
為有效對上述問題進行評估,本研究針對不同原物料、來源、堆肥方式之樣品,進行分析及討論。
第二章;本研究取臺灣北中南之代表性茶葉(三峽碧螺春、武陵茶、凍頂烏龍、杉林溪茶、阿里山茶、奇萊山茶、清境茶區、奧萬大與廬山等)及非臺灣產茶葉(中國石門雲霧茶、安溪鐵觀音與越南大叻綠茶)等茶葉進行分析,在區域分析方面取阿里山茶區(瑞里、特富野、隙頂、頂湖、樟樹湖與公田等)六個不同海拔茶園之茶葉進行分析,利用微波消化器進行前處理,再以感應式耦合電漿質譜儀方法(Inductively Coupled Plasma Mass Spectrometry,ICP–MS)進行分析茶葉所含之主要元素及微量元素與毒性金屬(K, Ca, Mg, Fe, Mn, Cu, Zn, Na, Al, Cd, Co, Cr, Ni, Se, V, As, Sr and Pb),藉以瞭解及分析茶葉中微量元素分佈之狀況。結果顯示茶葉中Pb含量普遍較低,其中以中國石門(雲霧茶)、南投魚池鄉及中國安溪(鐵觀音)濃度較高,該影響取決於種植環境與人為活動區域,另外茶葉中Al(229-1200ppm)含量普遍較高,因為茶樹為少數對鋁有富集作用的植物,因此藉由土壤淋溶作用經根部吸收於葉面儲存。
第三章;本研究藉由分析市售全省各區域茶葉之化學組成藉以了解區域環境對茶葉的貢獻,並且建立針對檢測茶葉中鍶及硼同位素之方法,以精確量測其同位素豐度值,並利用鍶、硼同位素豐度特性建立茶葉化學檢測法,作為茶葉產地鑑別之方法。分析結果得知臺灣茶葉87Sr/86Sr同位素豐度值介於0.70855-0.71235,這顯示臺灣茶葉鍶同位素的豐度有較大的差異,以產區而言中部又可大致區分為杉林溪茶區、梨山茶區、武陵茶區、清境茶區及海拔較低的凍頂茶區,其87Sr/86Sr同位素豐度值介於0.70878-0.71235,其中以奧萬大茶區與該區域樣品差異較大,如樣品為岩性相似地區其87Sr/86Sr同位素豐度則差異較小,因此推論奧萬大樣品可能非當地所生產之茶葉,在低海拔茶區部份其87Sr/86Sr同位素豐度值介於0.70985-0.71065,這顯示其區域主要組成為砂岩,可能因風化作用的差異而使其同位素的豐度而有所不同。在南部茶區以阿里山為主其87Sr/86Sr同位素豐度值介於0.70855-0.71176,而小區域的有較大的差異,主要是受阿里山(特富野)樣品的影響。另一方面,δ11B資料在不同產地與茶園有較大的差異,其變化量從0.38‰到23.73‰,可能與不同區域使用不同的肥料有關係。雖然鍶同位素豐度比已被廣泛作為地球化學示踪,卻鮮少有研究利用鍶與硼同位素豐度對於食品或飲料之示踪法出現於文獻中。因此運用鍶、硼同位素豐度來進行茶葉驗證是一項有前景的研究,並可藉此訂出全臺灣各地茶葉鍶、硼同位素豐度比,以供政府機構進行驗證比對並減少市面境外茶葉混充的情形。
第四章;臺灣每年消耗近五萬噸茶葉,轉變為有機廢棄物,對於焚化爐與掩埋場而言是一種處理的負擔。如何處理城市有機廢棄物是目前都市地區的一大挑戰。垃圾填埋場增設和焚燒爐的興建受限於環保法規而延伸許多的問題。通常,廚房垃圾含有大量的有機物和礦物質,並且可以很容易轉換成穩定的材料。堆肥(Compost)是一種可以應用於都市有機廢物管理或單獨收集庭院垃圾和廚房垃圾(Barirington et al., 2002)。大量的廢棄物經過「堆肥化」(Composting)處理可創造成本相對低且適合農業用途的產品。本研究收集臺南市60個堆肥樣品包含落葉堆肥(PL)、家戶廚餘堆肥(FW)及都市廚餘堆肥(MKWC)進行分析,分析項目包含基礎分析與重金屬(鎘、鋅、銅等),此外以堆肥樣品之發芽率(RSG)進行評估對環境的潛在影響。
結果顯示樣品中養分較高集中在都市廚餘堆肥中,其次是家戶堆肥,最低則是落葉堆肥,同時落葉堆肥的碳氮比也是最低的,其原因為有機質含量較低所造成的。而我們的研究結果顯示堆肥樣品的pH與發芽率有明顯的關係,當pH小於6.4時,其發芽率則小於10%。雖然以堆肥化來處理有機廢棄物是環保且有利於環境的方式,如果堆肥品質不佳反而會對環境造成負面影響。
第五章;本研究藉由分析臺灣特色茶葉化學組成,以建立各地區茶葉化學組成分佈圖,並以統計方法分析評估各地區指標元素之來源及其成因,借以釐清係人為活動或自然界的貢獻。將臺灣特色茶葉目前面臨之問題以科學的方法進行分析,針對下列兩個方向進行討論:茶葉化學組成與環境關聯性探討及探討茶葉中鍶-硼同位素與產地之關連性。此外本研究另一主題為探討臺灣都會區廚餘堆肥、植物堆肥與家戶廚餘堆肥之化學組成差異,藉由分析臺南地區社區廚餘堆肥之化學組成,以瞭解廚餘堆肥中所含的重金屬於再利用時是否會影響環境及植物體,再經由食物鏈間接影響人體健康。
英文摘要 Isotopic compositions of B and Sr in rocks and sediments can be used as tracers for plant provincial source identification. This study aims to investigate the feasibility of identifying the sources of tea leaves by using both concentrations of major/trace elements and 10B/11B and Sr isotopic composition. The tea specimens were collected from the major plantation gardens in Taiwan. Additionally, sixty compost extractions of plant leaf (PL), food wastes (FW), and municipal kitchen wastes (MKW) in Tainan city, Taiwan have been collected and analyzed for their pH value and relative seed germination (RSG). These composts were tested for RSG to evaluate their potential environmental impacts.
The results showed significant variations in 87Sr/86Sr ratios (from 0.70482-0.71462), which reflects the changes in soil, groundwater or irrigation conditions. The most radiogenic tea leaves were found at the Tatung Garden and the lowest radiogenic ones were from the Hualien Garden. The δ11B changed a lot (δ11B= 0.38- 23.73 ‰) because of the fertilizers. The maximum δ11B in tea samples was also observed in the Hualien Garden. This may be due to rather complicated local geological settings.
Importantly, our data suggest that pH plays a critical role in RSG, and the RSG value is always below 10% when pH<6.4. Although composting of organic waste treatment is environmental friendly, it is advised that the compost qualities need to be examined thoroughly before being applied to croplands in nature.
論文目次 目錄
摘 要 I
ABSTRACT V
目錄 XIII
圖目錄 XVI
表目錄 XVIII
第一章 研究緣起 1
1.1 研究背景與目的 1
1.1.1茶葉理化性狀與環境之關係 1
1.1.2 有機廢棄物再利用探討 3
1.2 論文架構 8
第二章 茶葉化學組成與環境關聯性探討 9
2.1 研究介紹 9
2.2 影響茶葉化學組成之可能環境因子 11
2.2.1水環境系統 11
2.2.2土壤及肥料 12
2.2.3人為活動 15
2.3臺灣特色茶葉主要品種之介紹 15
2.3.1 臺灣種植茶樹主要品種及其特性簡介 15
2.3.2 茶樹品種之分類(茶作栽培技術手冊,2005) 17
2.3.3 茶樹生長所需之養分(茶作栽培技術手冊,2005) 18
2.3.4 茶樹所需之營養素與肥料 20
2.3.5 臺灣特色茶研究現況 21
2.4樣品區域及研究方法 26
2.4.1區域地質分析 26
2.4.2茶葉樣品來源及其地理位置 29
2.5研究方法與步驟 31
2.5.1 茶葉前處理方法(修改自Sumontha et.al.,2006) 32
2.5.2 主要元素分析 32
2.5.3微量元素分析 34
2.6 結果與討論 38
2.6.1茶葉中主要與微量元素之探討 38
2.6.2主成分分析探討臺灣特色茶元素間之差異 49
2.7 結論與建議 57
第三章 探討茶葉中鍶-硼同位素與產地之關連性 58
3.1 研究介紹 58
3.2化學元素分析及其應用 60
3.2.1 鍶同位素特性之基本原理與其應用 60
3.2.2 硼同位素特性與其應用之基本原理 63
3.3研究方法與步驟 69
3.3.1研究流程 69
3.3.2 化學純化法 70
3.3.3 元素儀器分析 75
3.4 結果與討論 78
3.4.1 消化法回收率評估 78
3.4.2 鍶同位素與環境間之相關性 79
3.4.3 鍶、硼同位素與環境間之相關性 81
3.5 結論與建議 85
第四章 探討臺灣都會區廚餘堆肥、植物堆肥與家戶廚餘堆肥之化學組成差異 86
4.1 研究介紹 86
4.1.1堆肥原理 89
4.1.2生物降解(biodegradation)概述 92
4.1.3微生物代謝反應 94
4.2堆肥化方式 96
4.3 堆肥影響因素 98
4.3.1溫度影響 98
4.3.2氧氣 100
4.3.3水分 101
4.3.4 pH 101
4.3.5副資材 102
4.3.6 碳氮比(C/N) 102
4.4 堆肥腐熟判定指標 102
4.4.1 腐熟度 103
4.4.2肥效成分 104
4.4.3 土壤改良效果 104
4.4.4 有害物質含量 105
4.4.5 異物夾雜率 105
4.5堆肥肥料規範 106
4.6 材料與方法 110
4.6.1堆肥樣品 110
4.6.2 研究方法與步驟 113
4.6.3化學試劑與材料 114
4.6.4 堆肥化學性質分析 114
4.6.5分析方法 116
4.7結果與討論 121
4.7.1 氮、磷、鉀在堆肥成品中分布情形 121
4.7.2 不同堆肥成品pH的差異 122
4.7.3不同堆肥成品有機質的分布 122
4.7.4 碳氮比在堆肥成品的變化 122
4.7.5 堆肥成品發芽率的控制因子 128
4.7.6 不同原料堆肥化之重金屬分布及其來源 131
4.8 結論與建議 138
第五章 結論與建議 139
參考文獻 142
附錄 期刊論文發表紀錄 158
參考文獻 王仲龍, 2005。廚餘堆肥化處理技術之研究,國立高雄海洋科技大學海洋 環境工程研究所,碩士論文。
王西華, 李勝隆, 許金土, 張茂盛, 1998。玉米穗軸之固態醱酵,中國土木水利工程學會第三屆廢棄物處理技術研討會。
肖應凱, 劉衛國, 肖雲, Swihart G. H., 1997。硼特效樹脂離子交換法分離硼的研究.鹽湖研究,2(2),1-6.
呂苑苑, 許榮華, 趙平, 謝烈文, 李禾, 2008。利用MC-ICP-MS對水樣中硼同位素比值的測定,地球化學,37(1),l-8.
何念祖, 孟賜福, 1987。植物營養原理上海科學技術出版社發行238-300。
李國學, 張福鎖, 1999。固體廢棄物堆肥化與有機復合肥生產,化學工業出版社,北京。
林朝棨, 周瑞燉, 1974。臺灣地質:臺灣省文獻委員會發行
林浩潭, 1995。“重金屬及微量元素對植物之影響”,臺灣農家要覽-農作篇 (三) ,財團法人豐年社,行政院農委會農業藥物毒物試驗所。
林忠治, 2000。稻稈和豌豆苗頭製成的堆肥與其肥料性狀,國立臺灣大學 農業化學研究所,碩士論文。
行政院農業委員會農糧署網站,http://www.afa.gov.tw/peasant_index.asp?CatID=587
巫慶珊, 何佳鴻, 陳暐楨, 張一岑, 2003。 “食品廢棄物好氧生物降解之化學及生物特性研究”,廢棄物處理技術研討會論文。
洪嘉謨, 1999。 “廚餘堆肥製作”,豐年,49 卷,14 期,16-20。
洪嘉謨, 2003。 "廚餘有效利用",臺南市環保聯盟出版。 唐俊成、高銘木,“不同生物濾材對氨及硫化氫除臭效率之影響”,第十二屆。
袁紹英, 2001。營造優質生活-堆肥 DIY,環境檢驗,第三十四期,第 34-38。
陶發祥, 洪業湯, 冷雪天, 1996。鍶同位素對環境變化的指示意義[J].地質地球化學,第5期,45~49.
陳啟祥, 張裕釧, 林畢修, 1999。“微生物技術應用在禽畜廢棄物處理與環境衛生控制”,畜牧廢棄資源再生利用推廣研究成果討論會論文集,213-219。
賀偉雄, 2004。“國軍營區廢棄物堆肥資源化執行模式之研究”,國立高雄第 一科技大學環境工程研究所碩士論文。
經濟部工業局, 財團法人臺灣綠色生產力基金會, 2005。堆肥技術與設備 手冊及案例彙編,工業局出版。
劉俊英, 曹勵明, 李兆麟, 1984。元素地球化學[M].北京:科學出版社,361.
簡宣裕, 張明暉, 劉禎祺, 2005。“堆肥品質之判斷”,行政院農業委員會農業試驗所特刊第 121 號,P279-288。
Aberg, G., Jacks, G., Wickman, T., & Hamilton, P. J. (1990) Strontium isotopes in trees as an indicator for calcium availability. Catena 17, 1–11.
Adamtey, N., Cofie, O., Ofosu–Budu, G. K., Danso, S. K.A., & Forster, D. (2009) Production and storage of N-enriched co-compost. Waste Management 29, 2429–2436.
Adani, F., Tambone, F., & Genevini, P. (2009) Effect of compost application rate oncarbon degradation and retention in soils. Waste Manage 29, 74–179.
Aggarwal J. K. & Palmer M. R. (1995) Boron isotope analysis:A review. Analyst 120, 1301–1307.
Almeida C.M.R. & Vasconcelos M.T.S.D. (2004) Does the winemaking process influence the wine 87Sr/86Sr A case study, Food Chemistry 85, 7–12.
Alvarenga, P., Goncalves, A.P., Fernandez, R.M., Varennes, A., Vallini, G., Duarte, E., & Cuncha-Queda, A.C. (2009) Organic residues as immobilizing agents in aidedphytostabilization: I. Effects on soil chemical characteristics. Chemosphere 74,1292–1300.
Antonio, M.P., Andrew, F., & Steve, J. H. (2003) The classification of tea according to region of origin using pattern recognition techniques and trace metal data. Journal of Food Composition and Analysis 16, 195–211.
Atlas, R. M., & Bartha, R.(1998)“Composting. In: Atlas, R. M., & R.Bartha,” Microbial Ecology, Benjamin/ Cummings, Menlo Park, California. pp. 470–476.
Aubert, H., & Pinta.M. (1977) Trace elements in soils. Elsevier Scientific Publishing Company, New York.
Bhlke, J. K., & Horan, M. (2000) Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove,MD. Applied Geochemistry 15, 599–609.
Bari, Q. H., & Koenig, A. (2001) Effect of air recirculation and reuse on composting of organic solid waste. Resources, Conservation and Recycling 33, 93–111.
Barrington, S., Choiniere, D., Trigui, M., & Knight, W. (2002) Effect of carbon source on compost nitrogen and carbon losses. Bioresource Technology 83, 189–194.
Bassett, R.L., Buszka, P.M., & Davidson, G.R. (1995) Identification of groundwater solute sources using boron isotopic composition. Environmental Science and Technology 29, 2915–2922.
Beffa, T., Blanc, M., & Aragno, M.(1996) Obligately and facultatively autotrophic, sulfur and hydrogen oxidizing thermophilic bacteria isolated from hot composts. Archives of Microbiology 165, 34–40.
Benito, M., De Antonio, R., & Masaguer, A. (2000) Evaluación del compost vegetal, procedente de restos de poda, como sustrato de cultivo. Actas de Horticultura 32, 319–326.
Bingham, F.T., Elseewi, A., & Oretli, J.J. (1970) Characteristeristics of boron absorption by excised barley roots. Proceedings. Soil Science Society of America 34, 613–617.
Blum, J.D., & Erel, Y. (2003) Radiogenic isotopes in weathering and hydrology. Treatise on Geochemistry 5, 365–392.
Bolck, D. (1999) Quality compost From The End Users’Perspective, Biocycle. November, 57.
Brian, W. S., Rosemary, C. C. O., & liver, A. C. (2001) Effects of rainfall onweathering arte, base cation p rovenance, and Sr isotope composition of Hawaiian soils. Geochimica et Cosmochimica Acta 65, 1087–1099.
Brinton, W.F. (2000) Compost Quality Standards and Guidelines. Woods End Research laboratory, USA, pp. 32–35.
Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F., & Otto, J.B. (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–519.
Cabrera, C., Gimenez, R., & Lopez, M. C. (2003) Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry 51, 4427−4435.
Cambardella, C.A., Richard, T.L., & Russell, A. (2003) Compost mineralization in soil as a function of composting process conditions. European Journal of Soil Biology 39, 117–127.
Chan, K. (2003) Some aspects of toxic contaminants in herbal medicines. Chemosphere 52, 1361–1371.
Cao, H., Qiao, L., Zhang, H., & Chen, J. (2010) Exposure and risk assessment for aluminium and heavy metals in Puerh tea. The Science of the Total Environment 408, 2777−2784.
Chen, Z.M. (1984) The environmental pollutants in tea products. Chinese Journal of External Agriculture 3, 1–10.
Chen, Z.G., & Jin, C.W. (2006) Progress of research on the factors resulting in lead contamination in tea leaves. Guangdong Trace Elem. Sci 13, 7–10.
Chong, W.J., Du, S.T., Zhang, K., & Lin, X.Y. (2008) Factors determining copper concentration in tea leaves produced at Yuyao County. China. Food and Chemical Toxicology 46, 2054–2061.
Chung, F. L., Schwartz, J., Herzog, C. R., & Yang, Y. M. (2003) Tea and cancer prevention: Studies in animals and humans. The Journal of Nutrition 133, 3268S−3274S.
Dambiec, M., Polechońska L. & Klink A. (2013) Levels of essential and non-essential elements in black teas commercialized in Poland and their transfer to tea infusion. Journal of Food Composition and Analysis 31, 62-66.
De Souza, G. F., Reynolds, B. C., Kiczka, M., & Bourdon, B. (2010) Evidence for massdependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochimica Et Cosmochimica Acta 74, 2596–2614.
Diaz, L.F., Savage G.M., Eggerth L.L., & Golueke C.G.(1991)Composting and Recycling Municipal Solid Waste. Lewis Publisher, New York, p.122.
Dogramaci, S.S., & Herezeg, A.L. (2002) Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwater of the semi-arid Murray Basin, Australia. Journal of Hydrology 262(1~4), 50–67.
Domeizel, M., Khalil, A., & Prudent, P. (2004) UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresource Technology 94, 177–184.
Enayetullah, I., Sinha, A.H.M.M., Rothenberger, S., & Zurbrügg, C. (2006) Decentralised Composting for Cities of Low- and Middle-Income Countries. Waste Concern. ISBN: 978-3-906484-36-5.
Engelstad, O.P., & Terman, G.L. (1980) Agronomic effectiveness of phosphate fertilizer. In: Khasawneh, F.E., Sample, E.C., Kamprath, E.J. (Eds.), The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wisconsin, USA.
EPA and Local Environmental Protection Bureaus, (2013) Table 4-2 Properties of Municipal Solid Waste.
Eriksen, G., Coale, F., & Bollero, G. (1999) Soil nitrogen dynamics and maize production in municipal solid waste amended soil. Agron. J. 91, 1009–1016.
Fan, Y., Li, C., Lay, J.J., Hou, H., & Zhang, G. (2004) Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresource Technology 91, 189–193.
Faure, G., & Powell, J.L. (1972) Strontium Isotope Geology, Springer-Verlag, Berlin 28, 43–55.
Fernández, P.L., Pablos, F., Martín, M.J., & González, A.G. (2002) Multi-element analysis of tea beverages by inductively coupled plasma atomic emission spectrometry. Food Chemistry 76, 483−489.
Flaten, T.P. (2002) Aluminium in tea – concentrations, speciation and bioavailability. Coordination Chemistry Reviews 228(2), 385–395.
Fung, K.F., Zhang, Z.Q., Wong, J.W.C., & Wong, M.H. (2003) Aluminium and fluoride concentrations of three tea varieties growing at Lantua Island, Hong Kong. Environmental Geochemistry and Health 25, 219–232.
Garca-Ruiz, S.G.R.,Moldovan, M.,Fortunato, G.,Wunderli, S., & Alonso, J.I.G. (2007) Evaluation of strontium isotope abundance ratios in combination with multi-elemental analysis as a possible tool to study the geographical origin of ciders. Analytica Chimica Acta, 55–66
Goldberg, S. (1997) Reactions of boron with soils. Plant and Soil 193, 35–48.
Golueke, C.G. (1977) Biological reclamation of solid Waste. Rodale Press, Emmaus, PA, USA.
Graustein, W. C. (1988) 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. Stable Isotopes in Ecological Research, 491–512.
Han, W., Zhao, F., Shi, Y., Ma L., & Ruan, J. (2006) Scale and causes of lead contamination in Chinese tea. Environmental Pollution 139, 125−132.
Han, W., Shi, Y., Ma, L., Ruan, J., & Zhao, F. (2007) Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O. Kuntze). Chemosphere 66, 84–90.
Hasan, K.M.M., Sarkar, G., Alamgir, M., Bari, Q.H., & Haedrich, G. (2012) Study on the quality and stability of compost through a Demo Compost Plant. Waste Management 32, 2046–2055.
Hargreaves, J.C., Adl, M.S., & Warman, P.R. (2008) A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ 123, 1–14.
Herrera, F., Castillo, J.E., Chica, A.F., & Lopez Bellido, L. (2008) Use of municipal solid waste as a growing medium in the nursery production of tomato shoots. Bioresour. Technol 99, 287–296.
Holford, I.C.R. (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust. J. Soil Res 35, 227–239.
Horn, P. Schaaf, P., Holbach, B., Hölzl, S., & Eschnauer, H. (1993) 87Sr/86Sr from rock and soil into vine and wine, Z. Lebensm. Zeitschrift für Lebensmittel-Untersuchung und Forschung 196, 407–409.
Huynh, T.T., Laidlaw, W.S., Singh, B., Gregory, D., & Baker, A.J.M.(2008)Effects of phytoextraction on heavy metal concentrations and pH of pore-waterof biosolids determined using an in situ sampling technique. Environmental Pollution 156 , 874–882.
Ishikawa, T., & Nskamura, E. (1990) Suppression of boron volatilization from a hydrofluoric acid solution using a boron-mannitol complex. Anal. Chem. 62, 2612–2616.
Iyamuremye, F., & Dick, R.P. (1996) Organic amendments and phosphorus sorption by soils. Adv. Agron 56, 139–451.
Jacques, R.A., Arruda, E.J., de Oliveira, L.C., de Oliveira, A.P., Dariva, C., de Oliveira, J.V., & Caramão, E.B. (2007) Influence of Agronomic Variables on the Macronutrient and Micronutrient Contents and Thermal Behavior of Mate Tea Leaves ( Ilex paraguariensis ). Journal of Agricultural and Food Chemistry 55, 7510–7516.
Jayman, T.C.Z., & Sivasubramaniam, S. (1980) The use of fertilizers for tea in Sri Lanka. Part 3─ Foliar and soil analysis with particular reference to P, Ca and Mn. Tea Q. 49, 137–141.
Jin, C.W., He, Y.F., Zhang, K., Zhou, G.D., Shi, J.L., & Zheng, S.J. (2005) Lead contamination in tea leaves and non-edaphic factors affecting it. Chemosphere 61, 726–732.
Jin, C. W., Du, S. T., Zhang, K., & Lin, X. Y. (2008) Factors determining copper concentration in tea leaves produced at Yuyao County, China. Food and Chemical Toxicology 46, 2054-2061.
Kabata-Pendias, A. Dudka, S Chlopecka. A., & Gawinowska.T. (1992) Background levels and environmental influences on trace metals in soils of the temperate humid zone of Europe. p. 61–84. In D. C. Adriano (ed.) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton.
Kabata-Pendias, A. (2001) Trace elements in soils and plants, 3rd ed. CRC Press: BocaRaton, FL.
Kakihana, H., Kotaka, M., Shohei, S., Nomura, M., & Okamoto, M. (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull. Chem. Soc. Jap. 50, 158–163.
Karak, T., & Bhagat, R.M. (2010) Trace elements in tea leaves, made tea and tea infusion: A review. Food Research International 43, 2234–2252.
Karak, T., Sonar, I., Paul, R. K., Frankowski, M., Boruah, R. K., Dutta, A. K., & Das, D. K. (2015) Aluminium dynamics from soil to tea plant (Camellia sinensis L.): Is it enhanced by municipal solid waste compost application? Chemosphere 119, 917–926.
Kelly, S., Heaton, K., & Hoogewerff, J. (2005) Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends in Food Science & Technology 16, 555–567.
Keeling, A., Paton, I., & Mullett, J. (1994) Germination and growth of shoots in media containing unstable refuse-derived compost. Soil Biol. Biochem 26 (6), 767–772.
Kiss, E. (1988) Ion-exchange separation and spectrophotometric determination of boron in geological materials. Analytica Chimica Acta 211(2), 243—256.
Ko, H.J., Kim, K.Y., & Kim, H.T. (2008) Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Management 28, 813–820.
Krejcova, A., & Cernohorsky, T. (2003) Analytical, Nutritional and Clinical Methods Section The determination of boron in tea and coffee by ICP–AES method. Food Chemistry 82, 303–308
Kumar, A., Nair, A. G. C., Reddy, A. V. R., & Garg, A. N. (2005) Availability of essential elements in Indian and US tea brands. Food Chemistry 89, 441–448.
Kumar, M. Ou,Y. L., & Lin, J. G. (2010) Co-composting of green waste and food waste at low C/N ratio. Waste Manage 30, 602–609.
Lakhdar, A., Slatni, T., Iannelli, M.A., Debez, A., Pietrini, F., Jedidi, N., Massacci, A., & Abdelly, C. (2012) Risk of municipal solid waste compost and sewage sludge use on photosynthetic performance in common crop (Triticum durum). Acta Physiol. Plant 34, 1017–1026.
Lau, S.S.S., & Wong, J.W.C. (2001) Toxicity evaluation of weathered coal fly ash-amended manure compost. Water Air Soil Poll 128, 243–254.
Lee, D., Han, X.G., & Jordan, C.F. (1990) Soil phosphorus fractions, aluminium and water retention as affected by microbial activity in an Ultisol. Plant Soil 121, 125–136.
Leeman, W. P., Vocke, Jr. R. D., Beary, E. S., & Paulsen, P. J. (1991) Precise boron isotopic analysis of aqueous samples:Ion exchange extraction and mass spectrometry. Geochimica et Cosmochimica Acta 55(12), 3901–3907.
Lemarchand, D., Gaillardet J., Göpel, C., & Manhès, G. (2002) An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chemical Geology 182, 323–334.
Liang, C., Das, K.C., & McClendon, R.W. (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour. Technol 86, 131–137.
Liu, H.C., You, C.F., Huang K.F., & Chung, C.H. (2012) Precise determination of triple Sr isotopes (87Sr and 88Sr) using MC-ICP-MS. Talanta 88, 338– 344.
Liu, H.C., You, C.F., Chen, C.Y., Liu Y.C., & Chung, M.T. (2014) Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium. Food Chemistry 100, 1456–1463.
Madhu, M., Sahoo, D.C., Sharda V.N., & Sikka, A.K. (2011) Rainwater-use efficiency of tea (Camellia sinensis (L.)) under different conservation measures in the high hills of south India. Applied Geography 31, 450–455.
Magna, T., Wiechert, U. H., & Halliday, A. N. (2004) Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. International Journal of Mass Spectrometry 239, 67–76.
Marcos, A., Fischer, A., Rea, G., & Hill, S. J. (1998) Preliminary study using trace element Concentrations and a chemometrics approach to determine geographical origin of tea. Journal of Analytical Atomic Spectrometry 13, 521−525.
Mickinley, L.V., & Vestal, R.J. (1985) Microbial activity in composting. Biocycle 26, 39–43.
Miller, E. K., Blum, J. D., & Friedland, A. J.(1993) Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature 362, 438–441.
Miller, F.C. (1993) Composting as Process Based on the Control of Ecologically Selective Factors. Soil Microbial Ecology, 515–554.
Mishra, M., Sahu, R.K., Sahu, S.K., & Padhy, R.N. (2009) Growth, yield and elements content of wheat (Triticum aestivum) grown in composted municipal solid wastes amended soil. Environ. Dev. Sustain 11, 115–126.
Musashi, M., Oi T., Ossaka, T., & Kakihana, H. (1990) Extraction of boron from GSJ rock reference samples and determination of their boron isotopic ratios. Analytica Chimica Acta. 231, 147–150.
Naftz, D.L., Petermanb, Z.E., & Spanglera, L.E. (1997) Using δ87Sr values to identify sources of salinity to a freshwater aquifer, Greater Aneth Oil Field, Utah, USA. Chemical Geology 141, 195–209.
Namkoong, W., Hwang, E.Y., Cheong, J.G., & Choi, J.Y.(1999)A Comparative Evaluation of Maturity Parameters for Food Waste Composting. Compost Science and Utilization 7, 55–62.
Narayan, R., (1993) Biodegradation of polymeric materials during composting. Science and Engineer of Composting.
Nelson, A.J., & Sommers, L. E. (1982) Total carbon, Organic carbon and Organic matter. In: Methods of Soil Aanalysis (Page, A. L., R. H. Miller and D. R. Keeney eds), Part 2, 2nd. ed.”, SSSA and ASS, Madison, WI, USA, 539–579.
Nicholson, F.A., Chambers, B.J., Williams, J.R., & Unwin, R.J. (1999) Heavy metal contents of livestock feed and animal manures in England and Wales. Bioresour. Technol 70, 23–31.
Nookabkaew, S., Rangkadilok, N., & Satayavivad, J. (2006) Determination of trace elements in herbal tea products and their infusions consumed in Thailand. Journal of Agricultural and Food Chemistry 54, 6939–6944.
Nriagu, J. O. (1980) Cadmium in the environment, 1: Ecological cycling. John Wiley and Sons, New York.
Oda, H., Kawasaki, A., & Hirata, T. (2001) Determination of the geographic origin of brown-rice with isotope ratios of 11B/10B and 87Sr/86Sr. Analytical Sciences 17, i1627–i1630.
Oetting, G. C., Banner, J. L., John M., & Sharp, Jr. (1996) Regional controls on the geochemical evolution of saline groundwater in the Edwards aquifer, central Texas. Journal of Hydrology 181, 251–283.
Özdemir, Y., & Güçer, S. (1998) Speciation of manganese in tea leaves and tea infusions. Food Chemistry 61, 313–317.
Palmer, M. R., & Edmond, J. M. (1992) Controls over the strontium isotope composition of riverwater. Geochimica et Cosmochim ica Acta, 56(5),2099–2111.
Parker, A. J. (1981) Introduction: The chemistry of copper. p. 1–22. In J. F. Loneragan, A. D.Robson, and R. D. Graham (ed.) Copper in soils and plants. Academic Press,Sydney.
Park, H., & Schlesinger, W.H. (2002) Globel biogeochemical cycle of boron. Global Biogeochem. Cyc. 16(4), 1072
Pardo, M. T. (1999) Influence of phosphate on zinc reaction in variable charge soils. Communications in Soil Science and Plant Analysis 30, 5–6.
Pirkl, H., & Kralik, M., (1988) Ergebnisse einer umweltgeochemischen Flusssediment- beprobung im südlichen Wiener Becken und nördlichen Wechsel, Bericht der Geologischen Bundesanstalt Band 12.
Powell, J. J., Burden, T. J., & Thompson, R. P. H. (1998) In vitro mineral availability from digested tea: A rich dietary source of manganese. Analyst 123(8), 1721–1724.
Rees, R., Robinson, B.H., Menon,M., Lehmann,E., Goerg-Günthardt,M.S., & Schulin,R. (2011) Boron accumulation and toxicity in hybrid poplar (Populus nigra x euramericana). Environmental Science and Technology 45, 10538–10543.
Rivero, C., Chirenje, T., Ma, L.Q., & Martinez, G. (2004) Influence of compost on soil organic matter quality under tropical conditions. Geoderma 123, 355–361.
Roig, A., Cayuela, M.L., & Sa'nchez, M.A. (2004) The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere 57, 1099–1105.
Ruan, J. & Wong, M. (2001) Accumulation of fluoride and aluminiumrelated to different varieties of tea plant. Environmental Geochemistry and Health 23, 53–63.
Ruan, J. , Ma, L. & Shi, Y. (2006) Aluminium in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization. Environ Geochem Health 28, 519–528
Rummel, S., Hoelzl, S., Horn, P., Rossmann, A., & Schlicht, C. (2010) The combination of stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chemistry 118, 890–900.
Shearer, G., & Legg, J. O. (1975) Variation in the natural abundance of 15N of wheat plants in relation to fertilizer nitrogen applications. Soil Science Society of America Journal 39, 896–901.
Sager, M. (2007) Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biology & Biochemistry 39, 1383–1390.
Senbayram, M., Chen, R., Bakken, A., & Dittert, L.K. (2012) N2O emission and theN2O/(N2O + N2) product ratio of denitrification as controlled by available carbonsubstrates and nitrate concentrations. Agric. Ecosys. Environ. 147, 4–12.
Shabani, H., Peyvast, G.A., Olfati, J.A., & Kharrazi, P.R. (2011) Effect of municipal solid waste compost on yield and quality of eggplant. Com. Sci. 2, 85–90.
Shand, P., Darbyshire, D.P.F., Love, A.J., & Edmunds, W.M. (2009) Applications to source characterisationand water–rock interaction in contrasting landscapes. Applied Geochemistry 24 , 574–586.
Sims, J.T., & Wolf, D.C. (1994) Poultry waste management: agricultural and environmental issues. Adv. Agron. 52, 2–72.
Singh, B. R., & Steinnes, E. (1994) Soil and Water Contamination by Heavy Metals, in R. Lal and B. Stewart (eds), Soil Processes and Water Quality, Lewis Publishers/CRC Press, 233–279.
Smith, B. N., & Epstein, S. (1971) Influence of the diet on the distribution of carbon isotope fractionation. Plant Physiology 47, 380–384.
Smith, J. F. (1990) Composted Substrates Used in the Cultivation of the White Button Mushroom, Agaricus bispour. Aspect of Applied Biology 24, 131–143.
Smith, S.R. (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 35, 142–156.
Soumaré M., Tack F.M.G., & Verloo M.G. (2003) Characterisation of Malian and Belgian solid waste composts with respect to fertility and suitability for land application. Waste Management 23, 517–522.
Spiers, T.M., & Fietje, G. (2000) Green waste compost as a component in soilless growing media. Compost Sci. Util. 8, 19–23.
Spivack A. J. (1986) Boron Isotope Geochemistry. Ph.D thesis, Woods Hole Oceanographic Institution.
Stewart, B.W., Capo, R.C., & Chadwick, O.A. (1998) Quantitative strontium isotope models for weathering, pedogenesis and biogeochemical cycling. Geoderma 82, 173–195.
Street, R., Drábek, O., Száková, J., & Mládková, L. (2007) Total content and speciation of aluminium in tea leaves and tea infusions. Food Chemistry 104, 1662–1669.
Stewart, B.W., Capo, R.C., & Chadwick, O.A. (1998) Beverages by inductively coupled plasma atomic emission spectrometry. Food Chemistry 76, 483−489.
Suehara, K., Ohta, Y., Nakano, Y., & Yano, T.(1999)Rapid measurement and control of the moisture content of compost using near-infrared spectroscopy. Journal of Bioscience and Bioengineering 87(6), 769–774.
Sundberg, C. (2003) Food waste composting – effects of heat, acids and size. Swedish University of Agricultural Sciences, Institutionen för lantbruksteknik Thesis.
Susanne V., Lorenz G. D., Rummel S., Quétel C. R., Heiss G., Baxter M., Christophe B.P., Deters-Itzelsberger P., Hoelzl S., Hoogewerff J., Ponzevera E., Van Bocxstaele M., & Ueckermann H. (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chemistry. 118, 933–940.
Tam, N.F.Y., & Tiquia, S.M. (1994) Assessing toxicity of ‘spent sawdust piglitter’ using seed germination technique. Resour. Conserv. Recycl. 11, 261–274.
Thambirajah, J.J., Zulkali, M.D., & Hashim, M. A. (1995) Microbiological and Biochemical Changes During the Composting of Oil Palm Empty-Fruit-Bunches. Effect of Nitrogen Supplementation on the Substrate. Bioresoure Technology 52, 133–144.
Thompson, W., Leege, P., Millner, P., & Watson, M.E. (2003) Test Methods for the Examination of Composts and Composting. The US Composting Council, US Government Printing Office.
Tiller, K. G., & Merry, R. H. (1981) Copper pollution of agricultural soils.p.119–137. In J. F. Loneragan, A. D. Robson, and R. D. Graham (ed.) Copper in soils and plants. Academic Press, Sydney.
Tu, C., Zheng, C.R., & Chen, H.M. (2000) Effect of applying chemical fertilizers on forms of lead and cadmium in red soil.Chemosphere 41,133–138
Van Herwijnen, R., Hutchings, T.R., Al-Tabbaa, A., Moffat, A.J., Johns, M.L., & Ouki, S.K. (2007) Remediation of metal contaminated soil with mineral-amended composts. Environ. Pollut. 150, 347–354.
Vicky, L.M., Vestal, R.J., & Atal, E.E. (1985) Microbial activity in composting. Biocycle 26, 35–41.
Voerkelius, S., Lorenz, G. D., Rummel, S., Quétel, C. R., Heiss, G., Baxter, M., Christophe, B.P., Peter, D. I., & Hoelzl, S. (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chemistry 118, 933–940.
Wang, J.S.,Shen, W.L.,Sheppard, B.S., Evans E.H., Caruso, J.A., & Fricke, J. (1990) Time-resolved measurements with single droplet introduction to investigate space-charge effects in plasma mass spectrometry. Journal of the American Society for Mass Spectrometry 4, 159–174.
Wang, B.S., You, C.F., Huang, K.F., Wu, S.F., Aggarwal, S.K., Chung, C.H., & Lin, P.Y. ( 2010) Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta 82, 1378–1384.
Weber, J., Kocowicz, A., Bekier, J., Jamroz, E., Tyszka, R., Debicka, M., Parylak, D., & Kordas, L. (2014) The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. European Journal of Agronomy 54, 54–60.
Wolkowski, R. (2003) Nitrogen management considerations for land spreading municipal solid waste compost. J. Environ. Qual. 32, 1844–1850.
Wong, M. H., Zhang, Z. Q., Wong, J. W. C., & Lan, C. Y. (1998) Trace metal contents (Al,Cu and Zn) of tea: Tea and soil from two tea plantations, and tea products from different provinces of China. Environmental Geochemistry and Health 20(2), 87–94.
Wong, M. H., Fung, K. F., & Carr, H. P. (2003) Aluminiumand fluoride contents of tea,with emphasis on brick tea and their health implications. Toxicology Letter 137, 111–120.
Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R., & Chen, S.S. (2004) Flavonoids in food and their health benefits. Plant Foods for Human Nutrition 59(3), 113−122.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-06-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-06-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw