進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2203201422093100
論文名稱(中文) 五環素有機薄膜電晶體之雙載子特性調控與機制研究
論文名稱(英文) Studies of controllable ambipolar characteristics and mechanisms of pentacene-based organic thin-film transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 邱亮雲
研究生(英文) Liang-Yun Chiu
學號 L78981076
學位類別 博士
語文別 英文
論文頁數 112頁
口試委員 指導教授-鄭弘隆
口試委員-周維揚
口試委員-李玉華
口試委員-唐富欽
口試委員-張鼎張
口試委員-楊長謀
中文關鍵字 有機半導體  電晶體  電荷傳輸  五環素  閘極絕緣層  雙載子特性 
英文關鍵字 organic semiconductors  transistors  charge transport  pentacene  gate dielectric layers  ambipolar characteristics 
學科別分類
中文摘要 本論文聚焦於五環素有機薄膜電晶體的雙載子特性調控與機制研究。我們探究有機半導體的電荷傳輸機制與製程關鍵因子,以分子尺寸觀點,優化介面自由能的介面性質,提升元件的雙載子電特性。雙載子元件電特性如載子遷移率、臨界電壓、高/低態電流比例、次臨界擺幅等參數,其調整與控制,可由雙載子複合與釋放模型解釋,其說明逆向載子能夠抓取及釋放主要載子,因此可調變雙載子電特性與電荷行為。此假說擬藉不同電性實驗結果來驗證其正確性,包含縱向/橫向電場貢獻、不同掃描電壓範圍、遲滯現象、置換不同金屬電極等.再者,將鐵電高分子嵌入三明治絕緣層,用於五環素有機薄膜電晶體,能有效提升電子通道效能同時平衡雙載子電特性。利用電容相關量測,可獲致介面型態的缺陷密度、介面電荷行為等訊息。同時,五環素半導體的薄膜特性、微結構性質及結晶成長與雙載子元件電特性的相關性被探究。
第一部分,結合實驗與理論,我們報導有機半導體的雙載子傳輸調控,應用在場效電晶體。我們探究五環素,最常見被研究的有機半導體之一,以其為例,藉優化控制主動層通道的介面性質,獲致高效能、平衡性雙載子(也就是電子與電洞傳輸一樣快)電特性的場效電晶體。藉降低主動層介面自由能,電晶體的電子與電洞載子遷移率皆超過2.5 cm2/Vs,平衡載子遷移率因子近乎1。理論計算探究五環素分子,顯示電子密度出現的機率大多位於分子的上下末端,而電洞密度多占據分子中間的芳香烴環,這發現提供一合理洞悉,在有機場效電晶體,觀察高電子遷移率要較高電洞遷移率困難,也較易受外在環境影響。從振動再組織能的理論分析,認為電子在分子間傳輸,深受介面影響更甚電洞傳輸。於理論計算的輔助下,拉曼光譜用來特性化初期成長奈米尺寸的五環素分子結構與電荷傳輸,連結其在電晶體元件中展現的雙載子效能。這結果驗證微觀的分子性質與實際元件雙載子電特性間的關係。進一步的實際應用,將兩個相同雙載子電晶體組合成一有機似互補反相器,元件能展現好的靜態轉換特性,並有高電壓增益的輸出。
第二部分,使用合適的poly(methyl methacrylate) (PMMA)作為閘極絕緣緩衝層,研究五環素場效電晶體的雙載子電性曲線與元件參數。結果顯示其電特性與單載子傳輸的電晶體大不同。雙載子電晶體的電特性與遲滯行為與源-汲極偏壓,閘極偏壓掃描歷程皆有關。因此,我們提出雙載子複合與釋放模型假說,一步步解釋在轉移曲線上,雙載子複合與釋放的過程。其元件的平衡性電子、電洞載子遷移率皆超過1.5 cm2/Vs,作為不同電性量測的樣本元件,所觀察到的雙載子電特性現象,也與以二氧化矽為主動層的單載子傳輸特性電晶體不同。載子注入及接觸電阻對雙載子電特性的影響,亦可由缺陷電荷限制理論與傳輸線方法來分析。置換不同金屬電極,可自由調控五環素電晶體的雙載子傳輸特性為單載子傳輸,其電特性行為亦可由雙載子複合與釋放模型假說來解釋。
第三部分,聚焦於鐵電性高分子嵌入三明治絕緣結構的功能性,能大幅提升電子通道的電特性,達成更高效能、平衡電特性的五環素有機薄膜電晶體。三明治介電層能增強電子通道的有效閘極電場強度,而產生更多的電子濃度累積,且降低臨界電壓。於極化密度-電場強度分析中,顯示在電子通道操作時,增大電場使方向轉向沿鐵電高分子偶矩的方向,因而電容的電極化率會快速增加。當沒有五環素作用時,其純絕緣電容則為一線性斜率(線性電容)。由鐵電高分子誘發所產生的電偶極效應,在通道累積電子時較為明顯,更甚於通道累積電洞。新穎性電極化介電層是具有良好介電性質的絕緣材料,被證明其具備高電荷儲存能力、降低功耗且可簡易製程,因此適用於次世代相關光電元件、微電子元件中。
英文摘要 This thesis focuses on the controllable ambipolar characteristics and mechanisms in pentacene-based organic field-effect transistors (OFETs). We explored charge transport (CT) in organic semiconductors (OSCs) as well as key factors on device fabrication to improve ambipolar characteristics in molecular-scale views by optimizing the interface property in interfacial free energy. Ambipolar electrical characteristics, such as mobility, threshold voltage, on/off state ratio, and subthreshold swings, were controlled and adjusted through the dual-carrier recombination and release (DCRR) process. The DCRR hypotheses interpret that opposite sign charges can capture and release major charges and thus significantly influence electrical characteristics. These hypotheses were verified by the results of different electrical measurements of applied lateral and vertical electrical fields on a device, with different bias sweep histories and hysteresis phenomena and the replaced metals as electrodes. The dielectric sandwich structures inserted with a ferroelectric polymer layer (FPL) in pentacene-based OFETs were demonstrated for improving the n-channel and the balanced electric characteristics. Information on the trap density and charge behavior in an interface prototype was also obtained by the capacitance-related measurement. The correlations of film features, microstructural quality, and crystalline growth in pentacene with ambipolar characteristics were also investigated.
Part I reports the ambipolar CT modulation of OSCs in field-effect transistors (FETs) based on joint experimental and theoretical studies. Pentacene, one of the most widely studied OSCs, is used as an example in this study to achieve efficient and balanced ambipolar FETs (i.e., electron mobility is as fast as hole mobility) via the fine control of interfacial properties of the active channel. An electron and hole mobility of >2.5 cm2/Vs and a balanced ratio of approximately 1 can be achieved by eliminating the interfacial free energy of the active channel. Theoretical investigations of the pentacene molecule show that the electron density is mainly located on the terminal ends, but the hole density is located on the three centered aromatic rings. This finding provides insights into the difficulty of observing high electron mobility levels compared with hole mobility in FETs. An analysis of theoretical vibrational reorganization energy supports that the electron transport between pentacene molecules suffers from more serious interfacial effects than the hole transport. With the help of theoretical calculations, Raman spectroscopy can be used to characterize pentacene films at an early stage of growth in nanometer scale and assess the ambipolar transport potential in FETs. The results demonstrate an excellent correlation between ambipolar characteristics in actual organic FETs and microscopic molecular-level properties. In further practical applications, an organic complementary-like inverter is integrated with two identical ambipolar transistors. The modified inverter shows good static transfer characteristics and high voltage gain over 40 dB.
Part II presents the determination of the electrical characteristics of pentacene-based ambipolar OFETs through the use of appropriate dielectrics of poly(methyl methacrylate)(PMMA). Results show that the electrical characteristics of pentacene-based ambipolar OFETs significantly differ from those of unipolar OFETs. The electrical and hysteresis characteristics of the ambipolar OFETs depend on the applied source-drain bias and sweeping gate voltage history. The DCRR hypotheses are thus proposed to illustrate the DCRR process in the transfer characteristics step-by-step. The prepared balanced ambipolar OFETs show an electron and hole mobility of >1.5 cm2/Vs as a compared sample to interpret the difference in electrical phenomena compared with the one in unipolar OFETs with SiO2 dielectrics. The effects of charge injection and parasitic contact resistance on the ambipolar characteristics are analyzed by trap-charge-limited theory and the transmission line method. Replacing different metals (Ag, Au, and Ca) as electrodes can converse the ambipolar transport of pentacene to unipolar and can be applied into the corresponding OFETs to verify the DCRR hypotheses.
Part III highlights the functions of FPL in a dielectric sandwich structure to improve the n-channel electrical characteristics and achieve high-performance, balanced ambipolar OFETs. The sandwich dielectrics reinforce the effective electric fields, causing the net electrical field strength to induce extra charge density accumulations, and thus an early threshold voltage, to the n-channel characteristics. Polarization density–electric field analysis reveals that the overall electric susceptibility of the OSC sandwich structure for electron accumulations is rapidly increased as the applied electrical field aligns the dipole within the FPL along the same direction. However, the linearity is retained for the structure without OSC. The dipole effects of FPL are more significantly exhibited on the n-channel operation than on the p-channel operation. The novel polarized dielectrics are proven to be good insulating materials for next-generation photonic and micro-electronics because of their good charge-stored capability, simple fabrication and power saving capacity.
論文目次 摘要 I
Abstract III
致謝 VI
Contents VIII
Index of Tables X
Index of Figures XI
Chapter 1 Introduction 1
1-1 Organic semiconductor history 1
1-2 Research motivation 3
1-3 Thesis organization 4
1-4 Organic field-effect transistors 6
1-4-1 Device configurations 6
1-4-2 Operation principles 6
1-4-3 Unipolar/ambipolar transport 8
1-4-4 Function of gate dielectrics 9
1-4-5 Ambipolar operation modes 10
1-5 Experiment setups, device preparations and designs 13
1-5-1 Sample preparations 13
1-5-2 Main components in OFETs 13
Chapter 2 Manipulating the ambipolar characteristics 26
2-1 Introduction 26
2-2 Experimental section 28
2-2-1 Materials and device fabrications 28
2-2-2 Characterization 28
2-2-3 Quantum chemical calculations 29
2-3 Results and discussion 30
2-3-1 Ambipolar electrical characteristics with different buffer dielectrics 30
2-3-2 Interfacial free energy (R12) effect on balanced mobility 31
2-3-3 Raman analysis and molecular perspectives 32
2-3-4 Micro-structural examination and surface morphology 34
2-3-5 The relating theoretical perspectives 36
2-3-6 Organic inverters 37
2-4 Conclusions 39
Chapter 3 Ambipolar mechanisms: dual-carrier recombination and release (DCRR) effects 55
3-1 Introduction 55
3-2 Experimental section 57
3-3 Results and discussion 58
3-3-1 Electrical characteristics in pentacene-based OFETs
58
3-3-2 The hysteresis phenomena 59
3-3-3 Carrier injection effect 60
3-3-4 Analysis of diode-like currents 60
3-3-5 The DCRR hypothesis illustrations 61
3-3-6 Sweep history of gate voltage in DCRR model 62
3-4 Conclusions 64
Chapter 4 Balancing ambipolar electrical characteristics by sandwiching a ferroelectric polymer layer (FPL) 75
4-1 Introduction 75
4-2 Device preparations and fabrications 77
4-3 Results and discussion 78
4-3-1 FPL dielectrics effect on ambipolar characteristics 78
4-3-2 Trap density and charge behaviors at interface 79
4-3-3 Polarization effect in sandwich dielectrics 81
4-3-4 Optimizing n-channel characteristics and micro-structural analysis 83
4-4 Conclusions 84
Chapter 5 Conclusions, outlook and future work 93
Notes and references 95
Appendixes 107
A. List of abbreviations 107
B. List of symbols 109
List of publications 112
參考文獻 [1] H. Akamatu, H. Inokutchi, Y. Matsunaga, “Electrical conductivity of the perylene-bromine complex”, Nature 173, 168-169 (1954).
[2] R. G. Kepler, P. E. Bierstedt, R. E. Merrifield, “Electronic conduction and exchange interaction in a new class of conductive organic solids”, Phys. Rev. Lett. 5, 503-504 (1960).
[3] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042-2043 (1963).
[4] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirahawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, “Electronic conductivity in doped polyacetylene”, Phys. Rev. Lett. 39, 1098-1101 (1977).
[5] V. Coropcean, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. -L. Brédas, “Charge transport in organic semiconductors”, Chem. Rev. 107, 926-952 (2007).
[6] W. Brütting, Physics of organic semiconductors, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
[7] Z. Bao, J. Locklin, Organic field-effect transistors, CRC press, Boca Raton, FL, 2007.
[8]O. D. Jurchescu, M. Popinciuc, B. J. van Wees, T. T. M. Palstra, “Interface-controlled, high mobility organic transistors”, Adv. Mater. 19, 688-692 (2007).
[9] D. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics, Kluwer Academic Publishers, Boston, 2004.
[10] G. Horowitz, “Organic thin film transistors: from theory to real devices”, J. Mater. Res. 19, 1947-1962 (2004).
[11] J. -L. Brédas, D. Beljonne, V. Coropcean, J. Cornil, “Charge-transfer and energy-transfer processes in pi-Conjugated oligomers and polymers: a molecular picture”, Chem. Rev. 104, 4971-5003 (2004)
[12] C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51. 913-915 (1987).
[13] A. Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin-film”, Appl. Phys. Lett. 49, 1210-1212 (1986).
[14] H. Koezuka, A. Tsumura, T. Ando, “Field-effect transistor with polythiophene thin film”, Synth. Met. 18, 699-704 (1987).
[15] G. Horowitz, D. Fichou, X.Z. Peng, Z.G. Xu, F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl”, Solid State Commun. 72, 381-384 (1989).
[16] D. Kearns, M. Calvin, “Photovoltaic effect and photoconductivity in laminated organic systems”, J. Chem. Phys. 29, 950-951 (1958).
[17] I. Kymissis, Organic field effect transistors: theory, fabrication and characterization, Springer, Heidelberg, 2009.
[18] C. Brabec, U. Scherf, V. Dyakonov, Organic photovoltaics: Materials, device physics, and manufacturing technologies, WILEY-VCH, Weinheim, 2008.
[19] Z. Kafafi, Organic electroluminescence, Taylor & Francis, Boca Raton, FL, 2005.
[20] J. -L. Brédas, B. Themans, J. M. Andre, “The role of mobile organic radicals and ions (solitons, polarons and bipolarons) in the transport properties of doped conjugated polymers”, Synth. Met. 9, 265-274 (1984).
[21] I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, A. F. Morpurgo, “Tunable Fröhlich polarons in organic single-crystal transistors”, Nature 5, 982-986 (2006).
[22] U. Zschieschang, F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, K. Kern, H. Klauk, “Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv. Mater. 22, 982-985 (2010).
[23] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, “Organic nonvolatile memory transistors for flexible sensor arrays”, Science 326, 1516-1519 (2009).
[24] R. C. G. Naber, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, D. M. de Leeuw, “An organic field-effect transistor with programmable polarity”, Adv. Mater. 17, 2692-2695 (2005).
[25] D. Braga, H. G. Horowitz, “High performance organic field effect transistors”, Adv. Mater. 21, 1473-1486 (2009).
[26] S. Kola, J. Sinha, H. E. Katz, “Organic transistors in the new decade: toward n-channel, printed, and stabilized devices”, J. Polym. Sci. Pt. B-Polym. Phys. 50, 1090-1120 (2012). 
[27] E. J. Meijer, D. M. Deleeuw, S. Setayesh, E. V. Veenendaal, B. -H. Huisman,; P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nat. Mater. 2, 678-682 (2003).
[28] F. S. Kim, X. Guo, M. D. Watson, S. A. Jenekhe, “High-mobility ambipolar transistors and high-gain inverters from a donor–acceptor copolymer semiconductor”, Adv. Mater. 22, 478-482 (2010).
[29] J. Cornil, J. -L. Brédas, J. Zaumseil, H. Sirringhaus, “Ambipolar transport in organic conjugated materials Adv. Mater. 19, 1791-1799 (2007).
[30] J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen, M. M. Wienk, M. Turbiez, D. M. de Leeuw, R. A. J. Janssen, “Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics”, J. Am. Chem. Soc. 131,16616-16617 (2009).
[31]S. Dutta, S. D. Lewis, A. Dodabalapur, “hybrid organic/inorganic ambipolar thin film transistor chemical sensor”, Appl. Phys. Lett. 98, 213504-1-213505-3 (2011).
[32] M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck, P. Heremans, “ Charge trapping in organic transistor memories: on the role of electrons and holes”, Org. Electron. 10, 1252-1258 (2009).
[33] X. Cheng, Y. Y. Noh, J. Wang, M. Tello, J. Frisch, R. P. Blum, A. Vollmer, J. P. Rabe, N. Koch, H. Sirringhaus, “Controlling electron and hole charge injection in ambipolar organic field-effect transistors by self-assembled monolayers”, Adv. Funct. Mater. 19, 2407-2415 (2009).
[34] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. -W. Ou, P. K. -H. Ho, H. Sirringhaus, R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors”, Nature 434, 194-199 (2005).
[35] M. Schidleja, C, Melzer, M. Roth, T. Schwalm, C. Gawrisch, M. Rehahn, H. von Seggrern, “The role of Ca traces in the passivation of silicon dioxide dielectrics for electron transport in pentacene organic field effect transistor”, J. Appl. Phys. 104, 054505-1-054505-7 (2011).
[36] E. C. P. Smits, T. D. Anthopoulos, S. Setayesh, E. V. Veenendaal, R. Coehoorn, Paul W. M. Blom, B. d. Boer and D. M. de Leeuw, “ Ambipolar charge transport in organic field-effect transistors”, Phys. Rev. B 73, 205316-1-205316-9 (2006).
[37] C.-A. Di, Y. Liu, G. Yu, D. Zhu, “Interface Engineering: An effective approach toward high-performance organic field-effect transistors”, Accounts Chem. Res. 42, 1573-1583 (2009).
[38] T. Takenobu, T. Takahashi, J. Takeya, Y. Iwasa, “Effect of metal electrodes on rebrene single-crystal transistors”, Appl. Phys. Lett. 90, 013507-1-013507-3 (2007).
[39] D. J. Gundlach, L. Zhou, J. A. Nichols, P. V. Necliudov, M. S. Shur, T. N. Jackson, “An experimental study of contact effects in organic thin film transistors”, J. Appl. Phys. 100, 204509-1-204509-12 (2006).
[40] C. Y. Yang, S. S. Cheng, C. W. Ou, Y. C. Chuang, M. C. Wu, Dhananjay, C. W. Chu, “Realization of ambipolar pentacene thin film transistors through dual interfacial engineering”, J. Appl. Phys. 103, 094519-1-094519-6 (2008).
[41] G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, M. Hajlaoui, “The concept of “Threshold Voltage” in organic field effect transistors”, Adv. Mater. 10, 923-927 (1998).
[42] H. L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D. M. de Leeuw, T. Muck, J. Geurts, L. W. Molenkamp, V. Wagner, “ Bias-induced threshold voltages shifts in thin-film organic transistors”, Appl. Phys. Lett. 84, 3184-3186 (2004).
[43] H. Klauk, “Organic thin-films transistors”, Chem. Soc. Rev. 39, 2643-2666 (2010).
[44] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, G. Schitter, “Threshold voltage shift in organic field effect transistors by dipole
monolayers on the gate insulator”, J. Appl. Phys. 96, 6431-6438 (2004).
[45] M. Egginger, S. Bauer, R. Schwödiauer, H. Neugebauer, N. S. Sariciftci, “Current versus gate voltage hysteresis in organic field effect transistors”, Mon. Chem. 140, 735-750 (2009).
[46] S. M. Sze, K. K. Ng, Physics of semiconductor devices, Wiley-Interscience Hoboken, New Jersey, 2007.
[47] A. S. Sedra, K. C. Smith, Microelectronic circuits, Oxford University Press, New York, 2004.
[48] J. Zaumseil, H. Sirringhaus, “Electron and ambipolar transport in organic field-effect transistors”, Chem. Rev. 107, 1296-1323 (2007).
[49] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. -L. Brédas, P. C. Ewbank, K. R. Mann, “Introduction to organic thin film transistors and design of n-channel organic semiconductors”, Chem. Mater. 16, 4436-4451 (2004).
[50] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance”, Appl. Phys. Lett., 88, 162109-1-162109-3 (2006).
[51] T. B. Singh, T. Meghdadi, S. Gunes, N. Marjanovic,G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, “High performance ambipolar pentacnene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectrics”, Adv. Mater. 17, 2315-2320 (2005).
[52] S. Tanida, K. Noda, H. Kawabata, K. Matsushige, “N-channel operation of pentacene thin-film transistors with ultrathin polymer gate buffer layer”, Synth. Met. 160, 83-87 (2010).
[53] M. Schidleja, C. Melzer, H. von Seggern, “Investigation of charge-carrier injection in ambipolar organic light-emitting field-effect transistors”, Adv. Mater. 21, 1172-1176 (2009).
[54] A. Facchetti, “Semiconductors for organic transistors”, Mater. Today 10, 28-37 (2007).
[55] J. H. Seo, G. S. Chang, R. G. Wilks, C. N. Whang, K. H. Chae, S. Cho, K. H. Yoo, A. Moewess, “Unipolar-to-ambipolar conversion of organic thin-film transistors by organosilane self-assembled monolayer”, J. Phys. Chem. B 112, 16266-16270 (2008).
[56] H. Zhang, X. Guo, J. Hui, S. Hu, W. Xu, D. Zhu, “Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors”, Nano Lett. 11, 4939-4946 (2011).
[57] S. A. DiBenedetto, A. Facchetti, M. A. Ratner, T. J. Marks, “Molecular self
-assembled monolayers and multilayers for organic and unconventional inorganic thin-film transistor applications”, Adv. Mater. 21, 1407-1433 (2009).
[58] Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, K. Cho, “Effects of permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor”, Appl. Phys. Lett. 90, 132104-1-132104-3 (2007).
[59] R. P. Ortiz, A. Facchetti, T. J. Marks, “High- organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors”, Chem. Rev. 110, 205-239 (2010).
[60] B. L. Yeh, Y. H. Chen, L. Y. Chiu, J. W. Lin, W. Y. Chen, J. S. Chen, T. H. Chou, W. Y. Chou, F. C. Tang, H. L. Cheng, “ Organic nonvolatile memory based on low voltage organic thin film transistors with polymer gate electrets”, J. Electrochem. Soc. 158, H277-H280 (2011).
[61] A. Facchetti, M. H. Yoon, T. J. Marks, “Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics”, Adv. Mater. 17, 1705-1725 (2005).
[62] J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, “Gate insulators in organic field-effect transistors”, Chem. Mater. 16, 4543-4555 (2004).
[63] Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, Y. Liu, “Multibit storage of organic thin-film field effect transistors”, Adv. Mater. 21, 1954-1959 (2009).
[64] N. Benson, C. Melzer, R. Schmechel, H. von Seggern, “Electronic States at the Dielectric/Semiconductor Interface in Organic Field Effect Transistors. Phys. Status Solidi A-Appl. Mat. 205, 475-487 (2008).
[65] S. Takebayashi, S. Abe, K. Saiki, K. Ueno, “Origin of the ambipolar operation of a pentacene field-effect transistor fabricated on a poly(vinyl alcohol)-coated Ta2O5 gate dielectric with Au source/drain electrodes”, Appl. Phys. Lett. 94, 083305-1-083305-3 (2009).
[66] R. Schmechel, M. Ahles, H. von Seggern, “A pentacene ambipolar transistor: experiment and theory”, J. Appl. Phys. 98, 084511-1-084511-6 (2005).
[67] M. Kitamura, Y. Arakawa, “Pentacene-based organic field-effect transistors”, J. Phys.: Condens. Matter. 20, 184011-1-184011-16 (2008).
[68] J. E. Anthony, “Functionalized acenes and heteroacenes for organic electronics”, Chem. Rev. 106, 5028-5048 (2006).
[69] H. Klauk, Organic Electronics II, Wiley-VCH, Weinheim, Germany, 2012.
[70] M. H. Yoon, C. Kim, A. Facchetti, T. J. Marks, “Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, J. Am. Chem. Soc. 128, 12851-128569 (2006).
[71] .H. Usta, , A. Facchetti, T. J. Marks, “ N-channel semicondcutor materials design for organic complementary circuits”, Acc. Chem. Res. 44, 501-510 (2011).
[72] Y. Guo, G. Yu, Y. Liu, “Functional organic field-effect transistors”, Adv. Mater. 22, 4427-4447 (2010).
[73] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transports in organic crystals”, Science 303, 1644-1646 (2004).
[74] M. Uno, Y. Tominari, J. Takeya, “Fabrication of high-mobility organic single-crystal field-effect transistors with amorphous fluoropolymer gate insulators”, Org. Electron. 9, 753-756 (2008).
[75] Y. Zhao, Y. Guo, Y. Liu, “25th anniversary article: recent advances in n-type and ambipolar organic field-effect transistors”, Adv. Mater. 25, 5372-5391 (2013).
[76] F. Zhang, C. Melzer, A. Gassmann, H. von Seggern, T. Schwalm, C. Gawrisch, M. Rehahn, “High-performance n-channel thin-film transistors with acene-based semiconductors”, Org. Electron. 14, 888-896 (2013).
[77] M. E. Gershenson, V. Podzorov, A. F. Morpurgo, “Colloquium: Electronic transport in single-crystal organic transistors”, Rev. Mod. Phys. 78, 973-989 (2006).
[78] M. Schidleja, C. Melzer, H. von Seggern, “Electroluminescence from a pentacene based ambipolar organic field-effect transistors” Appl. Phys. Lett. 94, 123307-1-123307-3 (2009).
[79] S. R. Saudari, Y. J. Lin, Y. Lai, C. R. Kagan, “Device configurations for ambipolar transport in flexible, pentacene transistors”, Adv. Mater. 22, 5063-5068 (2010).
[80] N. Benson, M. Schidleja, C. Melzer, R. Schmechel, H. von Seggern, “Complementary organic field-effect transistors by ultraviolet dielectric interface modification”, Appl. Phys. Lett. 89, 182105-1-182105-3 (2006).
[81] T. Takenobu, K. Watanabe, Y. Yomogida, H. Shimotani, Y. Iwasa, “Effect of postannealing on the performance of pentacene single-crystal ambipolar transistors”, Appl. Phys. Lett. 93, 073301-1-073301-3 (2008).
[82] H. L. Cheng, X. W. Liang, W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, F. C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: application to pentacene-based organic transistors”, Org. Electron. 10, 289-298 (2009).
[83] H. L. Cheng, J. W. Lin, “Controlling polymorphic transformations of pentacene crystal through solvent treatments: an experimental and theoretical study”, Cryst. Growth Des. 10, 4501-4508 (2010).
[84] V. Coropceanu, J. M. André, M. Malagoli and J.-L. Brédas, “The role of vibronic interactions on intramolecular and intermolecular electron transfer in -conjugated oligomers”, Theor. Chem. Acc. 110, 59-69 (2003).
[85] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, M. F. Toney, “Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction. J. Am. Chem. Soc 126, 4084-4085 (2004).
[86] L. F. Drummy, D. C. Martin, “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films”, Adv. Mater. 17, 903-907 (2005).
[87] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications”, J. Appl. Phys. 80, 2501-2510 (1996)
[88] T. Kakudate, N. Yoshimoto,Y. Saito, “Polymorphism in pentacene thin films on SiO2 substrate”, Appl. Phys. Lett. 90, 081903-1-081903-3 (2007).
[89] Y. Murakami, S. Tomiya, N. Koshitani, Y. Kudo, K. Satori, M. Itabashi, N. Kobayashi , K. Nomoto, “Microstructural study of the polymorphic transformation in pentacene thin films”, Phy. Rev. Lett. 103, 146102-1-146102-4 (2009).
[90] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, X. W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films”, Adv. Funct. Mater. 17, 3639-3649 (2007).
[91] D. W. van Krevelen, K. te Nijenhuis, Properties of Polymers, Elsevier, Amsterdam, 2009.
[92] J. Zaumseil, R. H. Friend, H. Sirringhaus, “Spatial control of the recombination zone in an ambipolar light-emitting organic transistor”, Nat. Mater. 5, 69-74 (2009).
[93] P. F. Barbara, T. J. Meyer, M. A. Ratner, “Contemporary issues in electron transfer research”, J. Phys. Chem. 100, 13148-13168 (1996).
[94] A. P. Scott, L. Radom, “Harmonic vibrational frequencies: an evaluation of hartree
-fock, møller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors”, J. Phys. Chem. 100, 16502-16513 (1996).
[95] F. C. Wu, H. L. Cheng, C. H. Yen, J. W. Lin, S. J. Liu, W. Y. Chou, F. C. Tang, “Electron transport properties in fluorinated copper–phthalocyanine films: importance of vibrational reorganization energy and molecular microstructure”, Phys. Chem. Chem. Phys. 12, 2098-2106 (2010).
[96] S. E. Fritz, T. W. Kelley, C. D. Frisbie, “Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer”, J. Phys. Chem. B 109, 10574-10577 (2005).
[97] N. Kasai, M. Kakudo, X-Ray Diffraction by Macromolecules, Kodansha-Springer, Tokyo, 2005.
[98] V. K. Pecharsky, P. Y. Zavalij, Fundamentals of PowderDiffraction and Structural Characterization of Materials, Springer, New York, 2005.
[99] S. Y. Yang, K. Shin, C. E. Park, “The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics” Adv. Funct. Mater. 15, 1806-1814 (2005).
[100] S. Y. Kwak, C. G. Choi, B. S. Bae, “Effect of surface energy on pentacene growth and characteristics of organic thin-film transistors”, Electrochem. Solid State Lett. 12, G37-G39 (2009).
[101] B. Stadlober, U. Haas, H. Maresch, A. Haase, “Growth model of pentacene on inorganic and organic dielectrics based on scaling and rate-equation theory”, Phys. Rev. B 74, 165302-1-165302-9 (2006).
[102] S. Kera, H. Yamane, N. Ueno, “First-principles measurements of charge mobility in organic semiconductors: valence hole–vibration coupling in organic ultrathin films”, Prog. Surf. Sci. 84, 135-154 (2009).
[103] R. A. Marcus, “Electron transfer reactions in chemistry : theory and experiment (Nobel Lecture)”, Angew. Chem., Int. Ed. 32, 1111-1222 (1993).
[104] B. B.Y. Hsu, C. Duan, E. B. Namdas, A. Gutacker, J. D. Yuen, F. Huang, Y. Cao, G. C. Bazan, I. D. W. Samuel, A. J. Heeger, “Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors”, Adv. Mater. 24, 1171-1175 (2012).
[105] G. Meller, T. Grasser, Organic electronics, Springer, Berlin, 2010.
[106] T. Yasuda, T. Goto, K. Fujita,T. Tsutsui, “Ambipolar pentacene field-effect transistors
with calcium source-drain electrodes”, Appl. Phys. Lett. 85, 2098-2100 (2004).
[107] D. Boudinet, G. L. Blevennec, C. Serbutoviez, J. M. Verilhac, H. Yan, G. Horowitz, “Contact resistance and threshold voltage extraction in n-channel organic thin film transistors on plastic substrates”, J. Appl. Phys. 105, 084510-1-084510-7 (2009).
 [108] T. Takenobu, T. Takahashi, J. Takeya, Y. Iwasa, “Ambipolar organic field-effect transistors based on rubrene single crystals”, Appl. Phys. Lett. 88, 033505-1-033505-3 (2006).
[109] L.-Y. Chiu, H.-L. Cheng, H.-Y. Wang, W.-Y. Chou, F.-C. Tang, “Manipulating the ambipolar characteristics of pentacene-based field-effect transistors”, J. Mater. Chem. C 2, 1823-1829 (2014).
[110] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, “Electron traps and hysteresis in pentacene-based organic field-effect transistors”, Appl. Phys. Lett. 87, 243512-1-243512-3 (2005).
[111] H. E. Katz, X. M. Hong, A. Dodabalapur, R. Sarpeshkar, “Organic field-effect transistors with polarizable gate insulators”, J. Appl. Phys. 91, 1572-1576 (2002).
[112] D. B. A. Rep, A. F. Morpurgo, W. G. Sloof, T. M. Klapwijk, “Mobile ionic impurities in organic semiconductors”, J. Appl. Phys. 93, 2082-2090 (2003).
[113] R. C. G. Naber, J. Massolt, M. Spijkman, K. Asadi, P. W. M. Blom, D. M. de Leeuw, “Origin of the drain current bistability in polymer ferroelectric field-effect transistors”, Appl. Phys. Lett. 90,113509-1-113509-3 (2007).
[114]W. Brütting, S. Berleb, A. G. Mückl, “Device physical of organic light-emitting diodes based on molecular materials”, Org. Electron. 2, 1-36 (2001).
[115] J. Shen, J. Yang, “Physical mechanisms in double-carrier trap-charge limited transport processes in organic electroluminescent devices: A numerical study”, J. Appl. Phys. 83, 7706-7713 (1998).
[116] N. J. Watkins, L. Yan, Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett. 80, 4384-4386 (2002).
[117] L. Kergoat, B. Piro, M. Berggren, G. Horowitz, M. C. Pham, “Advances in organic transistor-based biosensors:from organic electrochemical transistors to electrolyte-gated organic field-effect transistors”, Anal. Bioanal. Chem. 402, 1813-1826 (2012).
[118] J. D. Yuen, R. Kumar, D. Zakhidov, J. Seifter, B. Lim, A. J. Heeger, F. Wudl, “Ambipolarity in benzobisthiadiazole-based donor–acceptor conjugated polymers”, Adv. Mater. 23, 3780-3785 (2011).
[119] S. Zhang, Y. Wen, W. Zhou, Y. Guo, L. Ma, X. Zhao, Z. Zhao, S. Barlow, S. R. Marder, Y. Liu, X. Zhan, “Perylene diimide copolymers with dithienothiophene and
dithienopyrrole: use in n-channel and ambipolar field-effect transistors”, J. Polym. Sci. Pol. Chem. 51, 1550-1558 (2013).
[120] L.-Y. Chiu, H. L. Cheng, W. Y. Chou, F. C. Tang, “The influence of dual-carrier recombination and release on electrical characteristics of pentacene-based ambipolar transistor”, Appl. Phys. Lett. 103, 193302-1-193302-4 (2013).
[121] M. Salinas, C. M. Jäger, A. Y. Amin, P. O. Dral, T. M. Friedrichsen, A. Hirsch, T. Clark, M. Halik, “The relationship between threshold voltage and dipolar character of self-assembled monolayers in organic thin-film transistors”, J. Am. Chem. Soc. 134, 12648-12652 (2012).
[122] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani,; H. Shimotani, N. Yoshimoto, S. Ogawa, Y. Iwasa, “Control of carrier density by self-assembled monolayers in organic field-effect transistors”, Nat. Mater. 3, 317-322 (2004).
[123] P. Pacher, A. Lex, V. Proschek, H. Etschmaier, E. Tchernychova, M. Sezen, U. Scherf, W. Grogger, G. Trimmel, C. Slugovc, E. Zojer, “Chemical control of local doping in organic thin-film transistors: from depletion to enhancement”, Adv. Mater. 20, 3143-3148 (2008).
[124] J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, S. M. Khaffaf, “Low- insulators as the choice of dielectrics in organic field-effect transistors”, Adv. Funct. Mater. 13, 199-204 (2003).
[125] J. Hwang, A. Wan, A. Kahn, “Energetic of metal–organic Interfaces: new experiments and assessment of the field”, Mater. Sci. Eng. R-Rep. 64, 1-31 (2009).
[126] E. H., Nicollian, J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley-Interscience, New York, 1982.
[127] E. H., Nicollian, A, Goetzberger, “The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique”, Bell System Tech. J. 46, 1055-1133 (1967).
[128] R. E. Herbert, Y. Hwang, S. Stemmer, “Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces”, J. Appl. Phys. 108, 124101-1-124101-14 (2010).
[129] J. M. Atkin, E. Cartier, T. M. Shaw, R. B. Laibowitz, T. F. Heinz, “Charge trapping at low-k dielectric-silicon interface probed by the conductance and capacitance techniques”, Appl. Phys. Lett. 93, 122902-1-193302-3 (2013).
[130] S. Horichi, Y. Yokura, “Organic ferroelectrics”, Nat. Mater. 7, 357-367 (2008).

[131] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, D. Y. Kim, “Polarity effects of polymer gate electrets on non-volatile organic field-effect transistor memory”, Adv. Funct. Mater. 18, 3678-3685 (2009).
[132] C. C. Chang, Z. W. Pei, Y, J. Chan, “Artificial electrical dipole in polymer multilayers for nonvolatile thin film transistor memory”, Appl. Phys. Lett. 143302-1- 143302-3 (2008).
[133] Y. Chung, E. Verploegen, A. Vailionis, Y. Sun, Y. Nishi, B. Murmann, Z. Bao, “Controlling electric dipoles in nanodielectrics and its applications for enabling air-stable n-channel organic transistors”, Nano Lett. 11, 1161-1165 (2011).
[134] M. G. Broadhurst, G. T. Davis, B. Gross, S. Mascarenhas, G. M. Sessler, J. van Turnhout, J. E. West, Topics in Applied Physics:Electrets, Springer-Verlag, Berlin, 1980.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-04-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw