進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2202201910455000
論文名稱(中文) 低電壓操作的有機記憶元件
論文名稱(英文) Low voltage operated organic memory devices
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 106
學期 2
出版年 107
研究生(中文) 郭朋霖
研究生(英文) Peng-Lin Kuo
學號 L76051312
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-周維揚
口試委員-鄭弘隆
口試委員-唐富欽
口試委員-葉柏良
中文關鍵字 聚醯亞胺  薄膜電晶體  有機記憶體元件  記憶窗口  固含量 
英文關鍵字 polyimide  organic thin-film transistor  organic memory devices  memory window  solid content 
學科別分類
中文摘要 本論文利用物理氣相沉積將鋁成長100 nm在玻璃基板上,再以高真空氧電漿蝕刻系統(O2-plasma)於鋁上形成高介電值(high-K)之氧化鋁絕緣層,以降低有機薄膜電晶體的門檻電壓(threshold voltage;VT)。選用型號為7013的聚醯亞胺(polyimide;PI)作為載子捕捉層(charge trapping layer),因其具有優異的絕緣性與良好的機械、化學性質,且能使有機半導體的長晶更佳。再使用N-甲基-吡咯酮(N-Methyl pyrrolidone;NMP)稀釋PI,並以固含量表示成6.3 wt%、4.7 wt%、3.2 wt%與1.6 wt%。PI也同時為駐極體(electret),其分子結構上具支鏈,會在外在的電場影響下,改變分子的排列方向並形成電偶極,可增強場效,加強捕捉載子能力。最後利用PVD成長80 nm 的N型有機半導體十三烷基駢苯衍生物(N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide;PTCDI-C13H27)作為傳輸載子之主動層,再鍍上80 nm銀為汲極與源極的電極,做出N型低電壓操作的有機非揮發性電晶體式記憶體(organic non-volatile transistor-type memory;ONVM)。
在薄膜分析的部分,利用接觸角分析儀分析不同固含量PI之表面能,可知PI為1.6 wt%時,其非極性項最小,但極性項最大,有較強的場效能力,使元件有最大的通道飽和電流。由掃描式開爾文探針顯微鏡(scanning kelvin probe microscopy;SKPM)分析結果表明,當PI的固含量改變時,其薄膜表面的電位不會有太大的差異,且薄膜表面電位分布均勻,表示其形成連續薄膜。利用原子力顯微鏡(atomic force microscopy;AFM)得知PI為1.6 wt%時表面粗糙度最大,但載子捕捉層薄膜的厚度最薄。再以X光繞射儀(x-ray diffraction;XRD)觀察到PTCDI-C13H27 成長於1.6 wt% PI上之結晶相較不明顯,其繞射波峰峰值較低且半高寬(full width at half maximum;FWHM)較小。
在有機薄膜電晶體之電性方面分析結果顯示,在不使用PI的有機薄膜電晶體中,其氧化鋁介電層無法有效地阻擋從閘極端的漏電流,使元件無法操作於1 V以上的電壓。過大的操作電壓會使元件的漏電流增大,穿透氧化鋁介電層使通道電流大幅上升,進一步使元件崩潰。而使用PI的有機薄膜電晶體,能輔助高介電質的氧化鋁阻擋漏電流的發生,更能使元件操作電壓上升至3 V,並增加元件的通道電流。在1.6 wt% PI時,擁有較低的門檻電壓與次臨界擺幅,較大的電容值、電流開關比與載子遷移率。推測主要原因為載子捕捉層厚度降低至24 nm,能有效增強場效的能力,使元件的通道電流值增大。
本論文的有機記憶體元件利用給予閘極之脈衝電壓(pulse voltage),使門檻電壓產生偏移。在記憶體元件特性分析結果顯示,不同固含量PI的記憶元件操作在3 V的閘極電壓時,皆可得最大記憶窗口。但在過高的脈衝閘極電壓下,有機記憶元件的介電層無法阻擋過強的電壓,會在一瞬間有過大的漏電流造成元件的崩潰。但在6.3 wt% PI時,由於載子捕捉層厚度為136 nm,造成閘極電壓的場效影響下降,降低載子捕捉的能力,記憶元件僅有0.1 V的記憶窗口。在進行記憶元件的操作時,可同時使用綠光雷射(λ = 533 nm)輔助清除,因有機半導體主動層PTCDI-C13H27之吸收光譜為綠光波段。在給予負閘極脈衝電壓清除的同時照射綠光雷射,可提供大量電子電洞對,幫助釋放被有機半導體層與載子捕捉層的介面陷捕能態所捕捉的電子,增大記憶窗口。利用綠光雷射輔助清除1.6 wt% PI的記憶元件,其記憶窗口能達到0.7 V。記憶元件的記憶保持度方面,由電壓偏移大小可判斷記憶元件寫入能力,可以發現載子捕捉層厚度低,捉捕電子能力較強。故PI固含量為1.6 wt%的記憶元件進行寫入並等待兩小時後,門檻電壓值僅下降0.2 V,說明了良好的記憶保持度。經過50次的寫入與清除,1.6 wt% PI的記憶元件仍能保有0.6 V的記憶窗口,證明記憶元件有良好的記憶耐久度。在元件的穩定度測試中,由於PI固含量為1.6 wt%的記憶元件缺陷能態密度最大為3.63 × 1012 / cm2 eV,有機半導體中的載子要不斷地填補缺陷能態密度,造成元件的通道電流會隨著時間而下降,待填補完缺陷能態後,元件的通道電流才會逐漸穩定。
英文摘要 In this study, we used high-K materials, aluminum oxide, as a dielectric of organic thin-film transistors (OTFTs) to reduce the threshold and operating voltages. Polyimide (PI) was applied to n-type OTFTs as both insulator and electret in order to improve electrical characteristics and memory windows of OTFT-based memories. The electrical characteristics of the devices and the properties of PI films with various solid contents were measured by electrical and capacitative analyzers.
According to the electrical characteristics of OTFTs, the devices without PI showed large leakage current (gate current). The devices with PI performed enhanced channel current as well as low and stable gate current. Furthermore, we used different solid content of PI solutions to modulate the properties of PI layers. We observed that thinner PI film increased gate electric field to enhance carrier accumulation in n-type N,N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide semiconducting layer, improving the channel current of OTFTs. Based on the results of electrical measurements of devices, the OTFT-based memory devices with a PI layer spin-coated from 1.6 wt% solution have more trap states exiting in the interface between the PI and the active layers of devices, compared with those from other solid content of solutions.
The OTFT-based memory devices displayed a good retention of memory window under continuous operation. Moreover, the memory window of the device with PI layer from 1.6 wt% solution only decreased 16% after 2 hours’ operation. Surprisingly, a 500% increment of memory window of memory device was achieved by assisting a green laser beam during device operation. In summary, we have successfully fabricated a low-voltage operated organic memory device, in which the memory window has potential in industry production.
論文目次 中文摘要 I
Extended Abstract VI
誌謝 XII
目錄 XIII
表目錄 XVII
圖目錄 XIX
第一章 緒論 1
1.1 有機薄膜電晶體介紹 1
1.2 記憶體元件介紹 1
1.2.1 揮發式記憶體 2
1.2.2 非揮發式記憶體 2
1.2.3 有機非揮發式記憶體 4
1.3 研究動機 5
第二章 有機薄膜電晶體與記憶體元件操作原理 8
2.1 有機半導體傳輸機制 8
2.2 有機薄膜電晶體基本架構 8
2.3 有機薄膜電晶體基本電性 9
2.3.1 汲極電流 10
2.3.2 電流開關比 11
2.3.3 次臨界擺幅 11
2.3.4 門檻電壓 12
2.3.5 載子遷移率 13
2.4 有機記憶元件操作原理 13
2.4.1 記憶體寫入與清除 14
2.4.2 門檻電壓偏移與記憶窗口 15
2.4.3 記憶保持度 15
2.4.4 記憶耐久度 15
第三章 實驗方法與儀器介紹 23
3.1 實驗材料 23
3.2 有機薄膜電晶體製程 24
3.2.1 基板切割與清潔 24
3.2.2 基板蒸鍍閘極 25
3.2.3 高介電係數金屬氧化層 25
3.2.4 PI旋轉塗佈製程 26
3.2.5 N型有機半導體材料與電極蒸鍍製程 26
3.3 實驗儀器 27
3.3.1 超音波震盪器 27
3.3.2 物理氣相沉積儀 28
3.3.3 高真空電漿蝕刻系統 28
3.3.4 旋轉塗佈機 28
3.4 分析儀器 29
3.4.1 半導體參數分析儀 29
3.4.2 脈衝電流電壓系統 29
3.4.3 電容分析儀 30
3.4.4 原子力顯微鏡 30
3.4.5 接觸角分析儀 31
3.4.6 X-ray繞射儀 31
3.4.7 吸收光譜分析儀 31
3.4.8 掃描式開爾文探針顯微鏡 32
第四章 實驗結果與討論 37
4.1 前言 37
4.2 PI薄膜特性分析 37
4.2.1 原子力顯微鏡分析 38
4.2.2 接觸角分析 38
4.2.3 掃描式開爾文探針顯微鏡分析 39
4.3 有機薄膜半導體特性分析 40
4.3.1 原子力顯微鏡分析 40
4.3.2 吸收光譜分析 41
4.3.3 X-Ray繞射分析 42
4.4 有機非揮發電晶體式記憶元件電特性分析 43
4.4.1 輸出特性曲線分析 43
4.4.2 轉換特性曲線分析 44
4.4.3 記憶窗口分析 45
4.4.4 光輔助清除下記憶窗口分析 46
4.4.5 記憶保持度 47
4.4.6 記憶耐久度 48
4.4.7 電容-電壓分析 48
4.4.8 汲極電流-時間分析 49
第五章 結論 75
5.1 實驗結論 75
5.2 未來工作 76
參考文獻 78
參考文獻 [1] H. Koezuka, A. Tsumura and T. Ando, “Field-effect transistor with polythiophene thin film”, Synthetic Metals, 18, 1-3, 699-704, 1987

[2] V. Coropceanu, J. Cornil, D. A. da S. Filho, Y. Olivier, R. Silbey and J. L. Bredas, “Charge Transport in Organic Semiconductors”, Chemical Reviews, 107, 4, 926-952, 2007

[3] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Advanced Material, 14, 2, 99-117, 2002

[4] J. Zhang, J. Jin, H. Xu, Q. Zhang and W. Huang, “Recent progress on organic donor–acceptor complexes as active elements in organic field-effect transistors”, Journal of Materials Chemistry C, 6, 14, 3485-3498, 2018

[5] Y. J. Cheng, S. H. Yang and C. S. Hsu, “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chemical Reviews, 109, 11, 5868-5923, 2009

[6] S. Kunic, Z. Sego, “OLED technology and displays”, Institute of Electrical and Electronics Engineers, 31-35, 2012

[7] R. H. Friend, R. W. Gymer, A. B. Holmes, J.H. Burroughes, R. N. Marks, C. Tailiani, D. D. C. Bradley, D.A. Dos. Santos, J. L. Bredas, M. Logdlund and W.R. Salaneck, “Electroluminescence in conjugated polymers”, Nature, 397, 6715, 121-128, 1999

[8] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications”, Proceedings of the National Academy of Sciences of the United States of America, 101, 27, 9966-9970, 2004

[9] J. Roh, J. Lee, C. M. Kang, C. Lee and B. J. Jung, “Air stability of PTCDI-C13-based n-OFETs on polymer interfacial layers”, Physica Status Solidi-Rapid Research Letters, 7, 7, 469-472, 2013

[10] B. Kumar, B. K. Kaushik, Y. S. Negi and P. Mittal, “Characteristics and Applications of Polymeric Thin Film Transistor: Prospects and Challenges”, Institute of Electrical and Electronics Engineers, 702-707, 2011

[11] J. Zaumseil and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors”, Chemical Reviews, 107, 4, 1296-1323, 2007

[12] T. Xu, L. Y. Xiang, M. L. Xu, W. F. Xie and W. Wang, “Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film”, Scientific Reports, 7, 1-7, 2017

[13] P. Cosseddu, S. Lai, G. Casula, L. Raffo and A. Bonfiglio, “High performance, foldable, organic memories based on ultra-low voltage, thin film transistors”, Organic Electronics, 15, 12, 3595-3600, 2014

[14] D. J. Gundlach, H. Klauk, C. D. Sheraw, C. C. Kuo, J. R. Huang and T. N. Jackson, “High-Mobility, Low Voltage Organic Thin Film Transistors”, International Electron Device Meeting, 99-111, 1999

[15] J. Do.Oh, E. S. Shin, D. K. Kim, J. H. Choi, “Organic devices based on pentacene and perylene by the neutral cluster beam deposition method”, Synthetic Metals, 220, 421-427, 2016

[16] M. Weis, “Organic semiconductor based field-effect transistors”, Institute of Electrical and Electronics Engineers, 14, 2014

[17] W. Wang, J. W. Shi and D. Ma, “Organic Thin-Film Transistor Memory With Nanoparticle Floating Gate”, Institute of Electrical and Electronics Engineers, 56, 5, 1036-1039, 2009

[18] W. Wang, D. Ma and Q. Gao, “Organic thin-film transistor memory with Ag floating-gate”, Microelectronic engineering, 91, 9-13, 2012

[19] M. D. Yi, J. K. Shu, Y. Z. Wang, H. F. Ling, C. Y. Song, W. Li, L. H. Xie and W. Huang, “The effect of porous structure of PMMA tunneling dielectric layer on the performance of nonvolatile floating-gate organic field-effect transistor memory devices”, Organic electronics, 33, 95-101, 2016

[20] H. J. Ni, J. G. Liu, Z. H. Wang and S. Y. Yang, “A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications”, Journal of Industrial and Engineering Chemistry, 28, 16-27, 2015

[21] X. J. Guo et al., “Current Status and Opportunities of Organic Thin-Film Transistor Technologies”, Institute of Electrical and Electronics Engineers, 64, 5, 1906-1921, 2017

[22] D. B. Hu, X. M. Wang, H. P. Chen and T. L. Guo, “High Performance Flexible Nonvolatile Memory Based on Vertical Organic Thin Film Transistor”, Advanced Functional Materials, 27, 41, 2017

[23] H. C. Chang, C. L. Liu and W. C. Chen, “Nonvolatile Organic Thin Film Transistor Memory Devices Based on Hybrid Nanocomposites of Semiconducting Polymers: Gold Nanoparticles”, Amer Chemical Soc Applied Materials & Interfaces, 5, 24, 13180-13187, 2013

[24] D. Prime and S. Paul, “Overview of organic memory devices”, Philosophical Transactions of The Royal Society A-Mathematical Physical and Engineering Sciences, 367, 1905, 4141-4157, 2009

[25] Q. C. Cassen, J. A. Luist and N. D. Salman, “Read-only memory”, United States Patent, 671, 948, 1972

[26] M.Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary, M. Hensel, M. Ishac, J. Javanifard, M. Landgraf, D. Leak, K. Loe, D. Mills, P. Ruby, R. Rozman, S. Sweha, S. Talreja and K Wojciechowski, “A multilevel-cell 32 Mb flash memory”, Institute of Electrical and Electronics Engineers, 132-133, 1995


[27] O. Winkler, F. Merget, M. Heuser, B. Hadam, M. Baus, B. Spangenberg and H. Kurz, “Concept of floating-dot memory transistors on silicon-on-insulator substrate”, Microelectronic Engineering, 61-2, 497-503, 2002

[28] D. Kahng and S.M. Sze, “A floating gate and its application to memory devices”, Bell System Technical Journal, 46, 6, 1288, 1967

[29] F. Nardi, S. Larentis, S. Balatti, D. C. Gilmer and D. Ielmini, “Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part I: Experimental Study”, Institute of Electrical and Electronics Engineers, 59, 9, 2461-2467, 2012

[30] T. M. Maffitt, J. K. Debrosse, J. A. Gabric, E. T. Gow, M. C. Lamorey, J. S. Parenteau, D. R. Willmott, M. A. Wood and W. J. Gallagher, “Design considerations for MRAM”, IBM Journal of Research and Development, 50, 1, 25-39, 2006

[31] A. Chen, “A review of emerging non-volatile memory (NVM) technologies and applications”, Solid-State Electronics, 125, 25-38, 2016

[32] F. C. Wu, B. L. Yeh, T. H. Chou, J. S. Chen, M. R. Tsai, H. L. Cheng and W. Y. Chou, “Improved electrical performance of organic thin-film transistors with modified high-K dielectrics”, Active-Matrix Flat panel Displays 184-186, 2018

[33] Z. F. An et al., “Stabilizing triplet excited states for ultralong organic phosphorescence”, Nature Materials, 14, 7, 685-690, 2015

[34] M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price and J. M. Tour, “Molecular random access memory cell”, Applied Physics Letters, 78, 23, 3735-3737, 2001

[35] T. J. Reece, S. Ducharme, A. V. Sorokin and M. Poulsen, “Nonvolatile memory element based on a ferroelectric polymer Langmuir-Blodgett film”, Applied Physics Letters, 82, 1, 142-144, 2003

[36] S. Tatemichi, M. Ichikawa, T. Koyama and Y. Taniguchi, “High mobility n-type thin-film transistors based on N, N-ditridecyl perylene diimide with thermal treatments”, Applied Physics Letters, 89, 11, 2006
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-02-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-02-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw