進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2202201520291500
論文名稱(中文) 在高波動度及低波動度狀態下探討主權債券及其信用違約風險交換市場間之動態關係
論文名稱(英文) The dynamic relationship between sovereign bonds and credit default swaps markets under high and low volatility states.
校院名稱 成功大學
系所名稱(中) 財務金融研究所
系所名稱(英) Graduate Institute of Finance
學年度 103
學期 2
出版年 104
研究生(中文) 黃家維
研究生(英文) Jia-Wei Huang
學號 r86014066
學位類別 碩士
語文別 英文
論文頁數 43頁
口試委員 指導教授-黎明淵
口試委員-簡金成
口試委員-王澤世
中文關鍵字 主權債券  信用違約風險交換  波動度  向量誤差修正模型  馬可夫轉換模型 
英文關鍵字 sovereign bonds  CDS  volatility  VECM  Markov-switching model 
學科別分類
中文摘要 本篇研究係利用馬可夫轉換向量誤差修正模型探討在高波動度及低波動度狀態下,主權債券與其信用違約交換之間的動態關係.本篇研究挑選四個位於成熟市場中的國家(美國、英國、德國及法國)作為主要研究樣本,另外亦挑選三個位於新興市場的國家(中國、墨西哥及南非)並將其結果摘錄於本研究中.本篇研究的實證結果整理如下: (一) 美國、德國及南非市場以外的其他市場,在低波動度狀態時,信用違約交換市場具有價格發現的功能;反之,在高波動度狀態時,價格發現功能將移轉至債券市場.此外,本篇研究發現,在美國市場中,不論是在高波動度還是低波動度狀態下,債券市場具有價格發現功能;而德國以及南非市場則顯示信用違約交換市場在整個樣本期間內皆具有價格發現的功能。(二)在所有市場中,低波動度狀態占所有樣本之比例皆大於高波動度狀態占所有樣本之比例,此結果顯示低波動度狀態較高波動度狀態更具有持續性;此外,在高波動度狀態下,債券利差及信用違約交換溢價之間的誤差,其絕對值大小明顯大於在低波動度狀態下的誤差絕對值.
英文摘要 This investigation is intended to examine the dynamic relationship between sovereign bonds and CDS markets under high and low volatility states using the Markov-switching vector error correction model (MS-VECM). Four countries in mature markets, including the U.S., the U.K., Germany and France, are selected as the main research sample in this study, and three countries in emerging markets, including China, Mexico and South Africa, are also selected, and their empirical results are also reported in this study. The empirical results of this study are shown as follows: First, the CDS market is shown to lead the bond market in the price discovery process during the low volatility state; conversely, the bond market plays a leadership role in the price discovery process under the high volatility condition except for U.S., Germany and South Africa. Specifically, for U.S. market, bond market plays a leadership role in price discovery during the whole sample period while for Germany and South Africa, CDS market has price discovery mechanism. Second, all of the countries in this study exhibit observation percentage for the low volatility state exceeding the percentage of a high volatility state and this result are consistent with the notion that the low volatility state is more persistent than the high volatility state; in addition, the means of the deviations between bond spread and CDS premiums during the high volatility state are much greater than those during the low volatility state.
論文目次 CONTENTS
摘要 I
SUMMARY II
誌謝 III
CONTENTS IV
LIST OF TABLES V
LIST OF FIGURES VI
1.INTRODUCTION....1
2.LITERATURE REVIEW....4
2.1. Studies on the relationship between CDS premiums and bond spread....4
2.2. Measure of price leadership to the bond and CDS markets....5
2.3. Development of research questions....6
3. DATA DESCRIPTION AND MODEL SPECIFICATIONS....9
3.1. Data description....9
3.2. Model Specifications....10
3.2.1. Conventional VECM: The model with constant parameters....10
3.2.2. MS-VECM: The model with state-varying parameters....12
4. EMPIRICAL RESULTS AND INTERPRETATION....19
4.1. Parameter estimates of the conventional VECM model....19
4.2. Parameter estimates of the MS-VECM model....20
─Asymmetric adjustment process across various volatility regimes....20
4.3. The empirical analysis of emerging market....21
4.4. Comparative analysis between high and low volatility states....23
5. CONCLUSIONS....25
6. REFERENCES....27

LIST OF TABLES
Table Ⅰ. Available data for all countries....31
Table Ⅱ. Unit root tests and cointegration tests of CDS premium and bond spread....32
Table Ⅲ. Parameter estimates of the VECM model for the system with constant term....33
Table Ⅳ. Parameters estimates of MS-VECM model for the system with state-varying....34
Table Ⅴ. Unit root tests and cointegration tests of CDS premium and bond spread (For emerging markets)....36
Table Ⅵ. Parameter estimates of the VECM model for the system with constant term (For emerging markets)....37
Table Ⅶ. Parameters estimates of MS-VECM model for the system with state-varying variances.(For emerging markets)....38
Table Ⅷ. Comparative analysis across various volatility states....40

LIST OF FIGURES
Figure 1. The logarithmic bond spread and CDS premium, the deviation between bond spread and CDS premium, the logarithmic first difference of bond spread and CDS premium, as well as the filtering probability of a high volatility state: the case of the U.S. market....42

Figure 2.The logarithmic bond spread and CDS premium, the deviation between bond spread and CDS premium, the logarithmic first difference of bond spread and CDS premium, as well as the filtering probability of a high volatility state: the case of the Chinese market....43

參考文獻 REFERENCES
1. Ammer J, Cai F. Sovereign CDS and bond pricing dynamics in emerging markets: Does the cheapest-to-deliver option matter? Journal of International Financial Markets, Institutions & Money; 21:369-387; 2011.
2. Avino D, Lazar E, Varotto S. Which market drives credit spreads in tranquil and crisis periods? An analysis of the contribution to price discovery of bonds, CDS, stocks and options. Working Paper; 2011.
3. Arakelyan A, Serrano P. Liquidity in credit default swaps markets. Universidad Carlos III de Madrid Working Paper; 2012.
4. Blanco R, Brennan S, Marsh I.W. An empirical analysis of the dynamic relationship between investment grade bonds and credit default swaps. Journal of Finance; 60:2255-2281; 2005.
5. Bai J, Julliard C, Yuan K. Eurozone sovereign bond crisis: Liquidity or fundamental contagion. Working Paper; 2012.
6. Chakravarty S, Gulen H, Mayhew S. Informed trading in stock and option markets. Journal of Finance; 59(3):1235-1257; 2004.
7. Dwyer GPJ, Locke P, Yu W. Index arbitrage and nonlinear dynamics between the S&P 500 futures and cash. Review of Financial Studies; 9:301-332; 1996.
8. Duffie D. Credit swap valuation. Financial Analysts Journal; 55:73-87; 1999.
9. Duffie D, Liu J. Floating-fixed credit spreads. Financial Analysts Journal; 57(3):76-87; 2001.
10. Engle RF, Granger CWJ. Co-intergration, error correction: representation, estimation, testing. Econometrica ; 55:251-276;1987;1987.
11. Filardo AJ. Business-cycle phases and their transitional dynamics. Journal of Business and Economic Statistics; 12:299-308; 1994.
12. Francis N, Owyang MT. Monetary policy in a Markov-switching vector error-correction model: implications for the cost of disinflation and the price puzzle. Journal of Applied Econometrics; 23:305-314; 2005.
13. Fontana A. The persistent negative CDS-bond basis during the 2007/08 financial crisis. Department of Economics, University of Ca’ Foscari Venice Working Paper; NO.13; 2010.
14. Gonzalo J, Granger C.W.J. Estimation of common long-memory components in co-integrated systems. Journal of Business and Economic Statistics; 13:27-35; 1995.
15. Hamilton JD, Susmel R. Autoregressive conditional heteroscedasticity and changes in regime. Journal of Econometrics; 64:307-333; 1994.
16. Hull, J, White A. Valuing credit default swapsⅠ: no counterparty default risk. Journal of Derivatives; 8:29-40; 2000.
17. Hull J, Predescu M, White A. The relationship between credit default swap spreads , bond yields, and credit rating announcements. Journal of Banking and Finance; 28:2789-2811; 2004.
18. Houweling P, Vorst T. An empirical comparison of default swaps pricing models. Working Paper; 2005.
19. Krozig HM, Marcellinom M, Mizon GE. A Markov-switching vector equilibrium correction model of the U.K. labor market. Emirical Economics; 27:233-254; 2002.
20. Luenberger DG. Linear and Nonlinear Programming; Addison-Wesley: Reading MA; 1984.
21. Longstaff F.A, Schwartz E. A simple approach to valuing risky fixed and floating rate debt. Journal of Finance; 50:789-821; 1995.


22. Li M-YL, Lin HW. Examining the volatility of Taiwan stock index returns via a three-volatility regime Markov-switching ARCH model. Review of Quantitative Finance and Accounting; 21:123-139; 2003.
23. Li M-YL. Volatility states and international diversification of international stock markets. Applied Economics; 39:1867-1876; 2007.
24. Li M-YL. Clarifying interrelation dynamics between options and stock markets using threshold vector error correction model. Mathematics and Computers in Simulation; 79:511-520; 2008.
25. Li M-YL. Dynamic hedge ratio for stock index futures: application of threshold VECM. Applied Economics; 10.1080/00036840701721380; 2008.
26. Li M-YL, The dynamics of the relationship between spot and futures markets under high and low variance regimes. Applied Stochastic Models in Business and Industry; 25:696-718; 2009.
27. Martens M, Kofman P, Vorst TCF. A threshold error-correction model for intraday futures and index returns. Journal of Applied Econometrics; 13:245-263; 1998.
28. Marsh W. High-frequency Markov-switching vector error-correction models in the foreign exchange market. Journal of Forecasting; 19:123-134; 2000.
29. McCauley R.N. International market implications of declining Treasury debt. Journal of Money, Credit and Banking; 34:952-966; 2002.
30. Ramchand L, Susmel R. Volatility and cross correlation across major stock markets. Journal of Empirical Finance; 5:397-416; 1998.
31. Ramchand L, Susmel R. Variance, covariances of international stock returns: the international capital asset pricing model revisited. Journal of International Financial Markets, Institutions and Money; 8:39-57; 1998.

32. Packer F, Zhu H. Contractual terms and CDS pricing. BIS Quarterly Review March; 2005.
33. Zhu H. An empirical comparison of credit spreads between the bond market and the credit default swap market. Journal of Finance Services Research; 29(3):211-235; 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw