系統識別號 U0026-2201202017512900 論文名稱(中文) 以碎形理論分析奈米金SERS基版之研究 論文名稱(英文) Study of Nanogold SERS Substrate Using Fractal Theory 校院名稱 成功大學 系所名稱(中) 機械工程學系 系所名稱(英) Department of Mechanical Engineering 學年度 108 學期 1 出版年 109 研究生(中文) 徐世宇 研究生(英文) Shih-Yu Hsu 學號 N16064836 學位類別 碩士 語文別 中文 論文頁數 69頁 口試委員 指導教授-施士塵口試委員-徐旭政口試委員-盧福翊 中文關鍵字 表面增強拉曼散射基板  奈米金  碎形維度  自相關函數  圖像分析 英文關鍵字 SERS substrate  gold nanoparticles  fractal dimension  autocorrelation function  image analysis 學科別分類 中文摘要 表面增強拉曼散射（Surface-enhanced Raman Scattering, SERS）是透過奈米金屬顆粒或者奈米金屬結構之表面電漿子（surface plasmon）效應，增強拉曼散射之訊號，以獲得更佳的材料分析結果。然而SERS效果包含了許多效應，對於奈米金屬結構相應帶來的SERS效益卻難以量化。碎形理論（Fractal theory）是透過分析物件之碎形結構、行為達成非尺度相關分析的方法。自然中有許多複雜結構是自相似（Self-similarity）的，在有效的觀測尺度下，均存在此相似性，故可以其自相似性之程度即碎形維度賦予複雜結構一個量化的值以進行評估。本研究以奈米金顆粒在鋁箔上形成 SERS 基板，並假設奈米金顆粒分布具有碎形行為，以碎形去趨勢化互相關函數分析（Fractal Detrended Cross-Correlation Analysis）求得基板之碎形維度。模擬碎形維度與奈米金顆粒分布、SERS 效應熱點分布之關係，預測碎形維度與相應SERS 效果。並實際以SERS基板測量結晶紫（Crystal Violet）與孔雀石綠（Malachite green）二染料之拉曼分析、SEM 圖像分析結果作比較。 英文摘要 In the experiment, we made surface-enhanced Raman scattering (SERS) substrates by dropping gold nanoparticle suspension on aluminum foils and applying current. After taking SEM images of the substrates’ surfaces, the fractal dimensions of each substrate were determined by image analysis with detrended cross-correlation function. In the meanwhile, we simulated both the electric field enhancement between gold nanoparticles and the distributions of gold nanoparticles on the aluminum foils to find out the relationship between the fractal dimension and the SERS enhancement factor. Finally, simulated data were compared with the real performances of SERS substrates. The results showed that the fractal dimensions became greater when the gold nanoparticles on the aluminum foils distributed more compactly, which were expected to have more hot spots and thus better SERS enhancements. The fractal dimensions have a positive correlation with the SERS enhancement factors in both real and simulated cases, meaning that the fractal dimensions described the properties of the SERS substrates and can be able to predict the effectiveness, given a convenient method to examine the SERS substrates by image analysis. 論文目次 口試合格證明 I 摘要 II Extended abstract III 致謝 XIV 總目錄 XV 表目錄 XVIII 圖目錄 XIX 第 1 章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目標與歷程 4 第 2 章 文獻回顧 5 2-1 拉曼散射 5 2-1-1 拉曼效應 5 2-1-2 拉曼偏移 6 2-1-3 拉曼活性 7 2-1-4 螢光干擾 7 2-2 表面增強拉曼散射 8 2-2-1 SERS簡介 8 2-2-2 表面電漿子共振 8 2-2-3 SERS基板 13 2-2-4 SERS因子 13 2-3 碎形理論 14 2-3-1 碎形理論簡介 14 2-3-2 自相似與碎形維度 16 2-3-3 碎形理論之應用 17 2-4 奈米金屬製備 19 2-4-1 奈米金屬簡介 19 2-4-2 奈米金屬的製備 19 2-4-3 奈米金懸浮液之分散 19 第 3 章 實驗內容 21 3-1 實驗目的 21 3-2 實驗簡介 21 3-3 實驗流程 22 3-4 實驗方法 23 3-4-1 製備奈米金懸浮液 23 3-4-2 製備SERS基板 24 3-4-3 測量粒子分布特性 26 3-4-4 計算碎形維度 27 3-4-5 量測拉曼訊號 34 3-4-6 模擬LPR之電磁場增強 35 3-4-7 模擬粒子堆疊與SERS熱點 39 3-4-8 其他論文中SERS基板效果之分析 40 3-5 實驗設備 42 第 4 章 實驗結果與討論 43 4-1 SERS基板製備 43 4-2 圖像之碎形維度分析 49 4-3 基板之SERS效果模擬 52 4-4 真實與模擬基板SERS效果比較 58 4-5 濾紙SERS基板效果之分析 62 第 5 章 總結 64 5-1 結論 64 5-2 未來研究方向 65 參考文獻 66 參考文獻 [1]Agarwal, U.P. and R.H. Atalla, Raman spectroscopy, Surface analysis of paper, pp. 152-181.(1995) [2]Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, Journal of the american chemical society. 99(15), pp. 5215-5217.(1977) [3]Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, Journal of electroanalytical chemistry and interfacial electrochemistry. 84(1), pp. 1-20.(1977) [4]Moskovits, M., Surface-enhanced spectroscopy, Reviews of modern physics. 57(3), pp. 783.(1985) [5]Mandelbrot, B., How long is the coast of Britain? Statistical self-similarity and fractional dimension, science. 156(3775), pp. 636-638.(1967) [6]Yamaguchi, Y., M.K. Weldon, and M.D. Morris, Fractal characterization of SERS-active electrodes using extended focus reflectance microscopy, Applied spectroscopy. 53(2), pp. 127-132.(1999) [7]Baibarac, M., et al., SERS spectra of polyaniline thin films deposited on rough Ag, Au and Cu. Polymer film thickness and roughness parameter dependence of SERS spectra, Synthetic Metals. 96(1), pp. 63-70.(1998) [8]Ferraro, J.R., Introductory raman spectroscopy. 2003: Elsevier. [9]Wilson, E.B., J.C. Decius, and P.C. Cross, Molecular vibrations: the theory of infrared and Raman vibrational spectra. 1980: Courier Corporation. [10]Mosier-Boss, P., S. Lieberman, and R. Newbery, Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques, Applied Spectroscopy. 49(5), pp. 630-638.(1995) [11]Otto, A., et al., Surface-enhanced Raman scattering, Journal of Physics: Condensed Matter. 4(5), pp. 1143.(1992) [12]Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS), Physical review letters. 78(9), pp. 1667.(1997) [13]Long, Y.-T. and C. Jing, Localized surface plasmon resonance based nanobiosensors. 2014: Springer. [14] García-Vidal, F.J. and J. Pendry, Collective theory for surface enhanced Raman scattering, Physical Review Letters. 77(6), pp. 1163.(1996) [15] Vlckova, B., X. Gu, and M. Moskovits, SERS excitation profiles of phthalazine adsorbed on single colloidal silver aggregates as a function of cluster size, The Journal of Physical Chemistry B. 101(9), pp. 1588-1593.(1997) [16]Kahl, M., et al., Periodically structured metallic substrates for SERS, Sensors and Actuators B: Chemical. 51(1-3), pp. 285-291.(1998) [17]Yu, Q., et al., Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement, Nanoscale. 3(9), pp. 3868-3875.(2011) [18]Mandelbrot, B.B., The fractal geometry of nature. Vol. 173. 1983: WH freeman New York. [19]Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion, IEEE Transactions on information theory. 38(2), pp. 910-917.(1992) [20]Bassingthwaighte, J.B. and J. Van Beek, Lightning and the heart: fractal behavior in cardiac function, Proceedings of the IEEE. 76(6), pp. 693-699.(1988) [21]Chiaudani, A., et al., Statistical and fractal approaches on long time-series to surface-water/groundwater relationship assessment: A central Italy alluvial plain case study, Water. 9(11), pp. 850.(2017) [22]Hirata, T., Omori's power law aftershock sequences of microfracturing in rock fracture experiment, Journal of Geophysical Research: Solid Earth. 92(B7), pp. 6215-6221.(1987) [23]Mansfield, G., T. Roy, and N. Shiratori. Self-similar and fractal nature of Internet traffic data. in Proceedings 15th International Conference on Information Networking. 2001. IEEE. [24]Peebles, P., The fractal galaxy distribution, Physica D: Nonlinear Phenomena. 38(1-3), pp. 273-278.(1989) [25]Shen, G., Fractal dimension and fractal growth of urbanized areas, International Journal of Geographical Information Science. 16(5), pp. 419-437.(2002) [26]Njoki, P.N., et al., Size correlation of optical and spectroscopic properties for gold nanoparticles, The Journal of Physical Chemistry C. 111(40), pp. 14664-14669.(2007) [27]Ye, T., et al., Synthesis and optical properties of gold nanorods with controllable morphology, Journal of Physics: Condensed Matter. 28(43), pp. 434002.(2016) [28]Faraday, M., X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light, Philosophical Transactions of the Royal Society of London,(147), pp. 145-181.(1857) [29]Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature physical science. 241(105), pp. 20.(1973) [30]Khan, Z., et al., Au (III)–CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles, Colloids and Surfaces B: Biointerfaces. 104, pp. 11-17.(2013) [31]Brust, M., et al., Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system, Journal of the Chemical Society, Chemical Communications,(7), pp. 801-802.(1994) [32]Derjaguin, B.v. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Progress in Surface Science. 43(1-4), pp. 30-59.(1993) [33]Verwey, E.J.W., Theory of the stability of lyophobic colloids, The Journal of Physical Chemistry. 51(3), pp. 631-636.(1947) [34]Bourke, P., An introduction to the Apollonian fractal, Computers & Graphics. 30(1), pp. 134-136.(2006) [35]Mackenzie, D., Computing Science: A Tisket, a Tasket, an Apollonian Gasket, American Scientist. 98(1), pp. 10-14.(2010) [36]Manna, S. and H. Herrmann, Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings, Journal of Physics A: Mathematical and General. 24(9), pp. L481.(1991) [37]Aste, T., Circle, sphere, and drop packings, Physical Review E. 53(3), pp. 2571.(1996) [38]Cherny, A.Y., et al., Scattering from surface fractals in terms of composing mass fractals, Journal of Applied Crystallography. 50(3), pp. 919-931.(2017) [39]Thissen, C.J. and M.T. Brandon, An autocorrelation method for three-dimensional strain analysis, Journal of Structural Geology. 81, pp. 135-154.(2015) [40]Zhou, W.-X., Multifractal detrended cross-correlation analysis for two nonstationary signals, Physical Review E. 77(6), pp. 066211.(2008) [41]Tsai, C.-H., J.-D. Lin, and C.-H. Lin, Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes, Talanta. 72(2), pp. 368-372.(2007) [42]Toroğlu, G. and L. Sevgi, Finite-difference time-domain (fdtd) matlab codes for first-and second-order em differential equations [testing ourselves], IEEE Antennas and Propagation Magazine. 56(2), pp. 221-239.(2014) [43]Lee, M., et al., Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface, ACS sensors. 3(1), pp. 151-159.(2018) [44]Ti Xu. Random close packing (RCP) on arbitrary distribution of circle sizes (https://www.github.com/BluesBlues213/random-close-packing), GitHub. Retrieved January 15, (2020). 論文全文使用權限 同意授權校內瀏覽/列印電子全文服務，於2020-02-12起公開。同意授權校外瀏覽/列印電子全文服務，於2020-02-12起公開。

 如您有疑問，請聯絡圖書館 聯絡電話：(06)2757575#65773 聯絡E-mail：etds@email.ncku.edu.tw