進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2201201722302500
論文名稱(中文) 釩和鐵硫錯合物對亞硝酸還原成一氧化氮之反應探討
論文名稱(英文) Studies of Nitrite Reduction to Nitric Oxide by Vanadium and Iron Thiolate Complexes
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 105
學期 1
出版年 106
研究生(中文) 吳宗翰
研究生(英文) Zong-Han Wu
學號 L36031063
學位類別 碩士
語文別 英文
論文頁數 107頁
口試委員 指導教授-許鏵芬
口試委員-蔡惠蓮
口試委員-許桂芳
口試委員-邱秀貞
中文關鍵字 亞硝酸鹽還原  釩硫錯合物  鐵硫錯合物  一氧化氮錯合物  一氧化氮 
英文關鍵字 nitrite reduction  vanadium thiolate complex  iron thiolate complex  nitrosyl complex, nitric oxide 
學科別分類
中文摘要 本實驗室以單釩/鐵金屬中心與含硫配位基PS3”合成之錯合物來還原亞硝酸根。其中,因為有較不穩定的氯離子,釩三價錯合物[PPh4][V(PS3”)(Cl)] (3)可作為還原反應的起始物。而釩含一氧化氮配位基的錯合物[PPh4][V(PS3”)(NO)] (1)則是還原亞硝酸根的產物。此產物以UV-vis-NIR、FT-IR、NMR、ESI-MS光譜鑑定。此外在ESI-MS、EPR光譜中發現釩氧錯合物的訊號,這被推測是另一個產物。綜合以上實驗數據,提出一個可行的機制:透過一個由亞硝酸鹽做架橋(μ2-(η1-N, η1-O)-NO2)的雙核釩錯合物作為中間物。此外, [PPh4][Fe(PS3”)(CH3CN)] (4), [PPh4][Fe(PS3”)(OCH3)] (5)和[PPh4][Fe(PS3”)(Cl)] (6)也可作為亞硝酸鹽還原反應的起始物,並透過UV-vis-NIR和ESI-MS光譜來監測[PPh4][Fe(PS3”)(NO)] (2)的形成。只有在過量亞硝酸鹽的情況下才有[PPh4][Fe(PS3”)(NO)] (2)的訊號,而且在ESI-MS光譜中發現一個鐵氧錯合物。因此可能在鐵系統跟釩是進行一樣的反應路徑。最後以比較含一氧化氮配位基金屬錯合物的結構做總結,結構參數和N-O鍵的振動頻率是探討的重點。
英文摘要 In this work, we reported the nitrite reduction by vanadium and iron complexes supported by a tris(benzenethiolato)phosphine (PS3”) derivative. Vanadium (III) complex, [PPh4][V(PS3”)(Cl)] (3), was served as the starting material to react with nitrite due to the labile nature of bound chloride. The formation of [PPh4][V(PS3”)(NO)] (1) was characterized by UV-vis-NIR, FT-IR, NMR, ESI-MS spectra. A vanadium (IV)-oxo complex was proposed as the second product that was evidenced by ESI-MS and EPR spectra. According to the spectroscopic observations, a reaction pathway was proposed via a dinucler vanadium intermediate bridging by a nitrite (μ2-(η1-N, η1-O)-NO2). Moreover, the reaction with nitric oxide was also investigated by UV-vis-NIR spectra. In addition, the formation of iron nitrosyl complex, [PPh4][Fe(PS3”)(NO)] (2), by the reactions of [PPh4][Fe(PS3”)(CH3CN)] (4), [PPh4][Fe(PS3”)(OCH3)] (5), and [PPh4][Fe(PS3”)(Cl)] (6) with nitrite were also studied by UV-vis-NIR and ESI-MS spectra. It was found that an extra equivalents of nitrite is needed to form [Fe(PS3”)(NO)]-. An iron-oxo species was observed from the reaction mixture by ESI-MS spectra. Accordingly, the nitrite reduction iron and vanadium complexes in this system might share similar pathways. Finally, overall comparison for iron and vanadium nitrosyl complexes is summarized here. The structural parameters and NO vibration frequency are particularly emphasized here.
論文目次 Abstract I
中文摘要 II
致謝 III
Table of Content IV
List of Tables VI
List of Figures VII
List of Schemes XI
Abbreviations XII
Chapter 1 Introduction 1
1-1 Nitrite and Nitric Oxide 1
1-2 Nitrite Reductases and Similar Functioned Proteins 1
1-3 Biomimetic Complexes 3
1-3.1 Proton-Dependent Mechanism 3
1-3.2 Oxygen Atom Transfer Mechanism 11
1-3.3 Secondary Coordination Sphere Catalysts 17
1-4 Vanadium and Nitrate/Nitrite 19
1-5 Motivation 20
Chapter 2 Studies of Nitrite Reduction by Vanadium Complexes 21
2-1 Qualitative Part of Nitrite Reduction 22
2-2 Quantitative Part of Nitrite Reduction 34
2-3 Vanadium (III) Complexes and Nitric Oxide 41
2-4 Mechanism Discussion 42
2-4.1 Proton-Induced Mechanism discussion 42
2-4.2 Vanadium Complexes as Oxygen Atom Transfer Substrates 45
2-4.3 Other Substrates Discussion 54
2-5 Summary 55
Chapter 3 Studies of Nitrite Reduction by Iron Complexes 56
3-1 Iron (II) Complexes and Nitrite 56
3-2 Iron (II) Complexes and Nitric oxide 66
3-3 Iron (III) Complexes and Nitrite 68
3-4 Iron (III) Complexes and Nitric Oxide 70
3-5 Summary 73
Chapter 4 the Comparison of Nitrosyl Complexes Structure 74
4-1 5-coordination Triangular Bipyramid Iron Mono-Nitrosyl Complexes 75
4-2 Vanadium Nitrosyl Complexes 83
Chapter 5 Conclusion 90
Chapter 6 Experiments and Instrument 91
6-1 General Procedures and Materials 91
6-2 Synthesis 92
6-2.1 Synthesis of [PPh4][V(PS3”)(NO)] (1) 92
6-2.2 Synthesis of [PPh4][Fe(PS3”)(NO)] (2) 93
6-2.3 Synthesis of [PPh4][V(PS3”)(Cl)] (3) 93
6-2.4 Synthesis of [PPh4][Fe(PS3”)(CH3CN)] (4) 94
6-2.5 Synthesis of [PPh4][Fe(PS3”)(OCH3)] (5) 95
6-2.6 Synthesis of [PPh4][Fe(PS3”)(Cl)] (6) 95
6-3 Reactivity 97
6-4 Instruments 99
Chapter 7 Reference 100
參考文獻 Heinecke, J.; Ford, P. C., Mechanistic studies of nitrite reactions with metalloproteins and models relevant to mammalian physiology. Coordination Chemistry Reviews 2010, 254 (3), 235-247.
2. Ignarro, L. J., Nitric oxide: biology and pathobiology. Academic press: 2000.
3. Omar, S. A.; Webb, A. J., Nitrite reduction and cardiovascular protection. Journal of molecular and cellular cardiology 2014, 73, 57-69.
4. Cosby, K.; Partovi, K. S.; Crawford, J. H.; Patel, R. P.; Reiter, C. D.; Martyr, S.; Yang, B. K.; Waclawiw, M. A.; Zalos, G.; Xu, X., Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nature medicine 2003, 9 (12), 1498-1505.
5. Dezfulian, C.; Raat, N.; Shiva, S.; Gladwin, M. T., Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovascular research 2007, 75 (2), 327-338.
6. Pattillo, C. B.; Bir, S.; Rajaram, V.; Kevil, C. G., Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases. Cardiovascular research 2010, cvq297.
7. Duranski, M. R.; Greer, J. J.; Dejam, A.; Jaganmohan, S.; Hogg, N.; Langston, W.; Patel, R. P.; Yet, S.-F.; Wang, X.; Kevil, C. G., Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. The Journal of clinical investigation 2005, 115 (5), 1232-1240.
8. Hardison, R. C., A brief history of hemoglobins: plant, animal, protist, and bacteria. Proceedings of the National Academy of Sciences 1996, 93 (12), 5675-5679.
9. Gladwin, M. T.; Kim-Shapiro, D. B., The functional nitrite reductase activity of the heme-globins. Blood 2008, 112 (7), 2636-2647.
10. Kołaczkowska, A.; Dyląg, M.; Kołaczkowski, M., Differential expression of the Candidaglabrata CgRTA1 and CgRSB1 genes in response to various stress conditions. Biochemical and biophysical research communications 2013, 432 (1), 169-174.
11. Cossins, A. R.; Williams, D. R.; Foulkes, N. S.; Berenbrink, M.; Kipar, A., Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. Journal of Experimental Biology 2009, 212 (5), 627-638.
12. Shiva, S.; Huang, Z.; Grubina, R.; Sun, J.; Ringwood, L. A.; MacArthur, P. H.; Xu, X.; Murphy, E.; Darley-Usmar, V. M.; Gladwin, M. T., Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circulation research 2007, 100 (5), 654-661.

13. Tavares, P.; Pereira, A.; Moura, J.; Moura, I., Metalloenzymes of the denitrification pathway. Journal of inorganic biochemistry 2006, 100 (12), 2087-2100.
14. Castiglione, N.; Rinaldo, S.; Giardina, G.; Stelitano, V.; Cutruzzola, F., Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxidants & redox signaling 2012, 17 (4), 684-716.
15. Allen, J. W.; Ferguson, S. J.; Fülöp, V., Cytochrome cd1 nitrite reductase. Encyclopedia of Inorganic and Bioinorganic Chemistry 2011.
16. Moura, I.; Moura, J. J., Structural aspects of denitrifying enzymes. Current opinion in chemical biology 2001, 5 (2), 168-175.
17. Silaghi-Dumitrescu, R., Linkage Isomerism in Nitrite Reduction by Cytochrome cd 1 Nitrite Reductase. Inorganic chemistry 2004, 43 (12), 3715-3718.
18. Matson, E. M.; Park, Y. J.; Fout, A. R., Facile nitrite reduction in a non-heme iron system: Formation of an iron (III)-oxo. Journal of the American Chemical Society 2014, 136 (50), 17398-17401.
19. Ching, W.-M.; Chuang, C.-H.; Wu, C.-W.; Peng, C.-H.; Hung, C.-H., Facile Nitrite Reduction and Conversion Cycle of {Fe (NO)} 6/7 Species: Chemistry of Iron N-Confused Porphyrin Complexes via Protonation/Deprotonation. Journal of the American Chemical Society 2009, 131 (23), 7952-7953.
20. Pitarch López, J.; Heinemann, F. W.; Prakash, R.; Hess, B. A.; Horner, O.; Jeandey, C.; Oddou, J. L.; Latour, J. M.; Grohmann, A., Iron Carbonyl, Nitrosyl, and Nitro Complexes of a Tetrapodal Pentadentate Amine Ligand: Synthesis, Electronic Structure, and Nitrite Reductase‐like Reactivity. Chemistry–A European Journal 2002, 8 (24), 5709-5722.
21. Sanders, B. C.; Hassan, S. M.; Harrop, T. C., NO2–Activation and Reduction to NO by a Nonheme Fe (NO2) 2 Complex. Journal of the American Chemical Society 2014, 136 (29), 10230-10233.
22. Tsou, C. C.; Yang, W. L.; Liaw, W. F., Nitrite activation to nitric oxide via one-fold protonation of iron(II)-O,O-nitrito complex: relevance to the nitrite reductase activity of deoxyhemoglobin and deoxyhemerythrin. J Am Chem Soc 2013, 135 (50), 18758-61.
23. Fujii, H.; Yamaki, D.; Ogura, T.; Hada, M., The functional role of the structure of the dioxo-isobacteriochlorin in the catalytic site of cytochrome cd(1) for the reduction of nitrite. Chemical Science 2016, 7 (4), 2896-2906.
24. Villar-Acevedo, G.; Nam, E.; Fitch, S.; Benedict, J.; Freudenthal, J.; Kaminsky, W.; Kovacs, J. A., Influence of Thiolate Ligands on Reductive N− O Bond Activation. Probing the O2− Binding Site of a Biomimetic Superoxide Reductase Analogue and Examining the Proton-Dependent Reduction of Nitrite. Journal of the American Chemical Society 2011, 133 (5), 1419-1427.

25. Maji, R. C.; Barman, S. K.; Roy, S.; Chatterjee, S. K.; Bowles, F. L.; Olmstead, M. M.; Patra, A. K., Copper Complexes Relevant to the Catalytic Cycle of Copper Nitrite Reductase: Electrochemical Detection of NO (g) Evolution and Flipping of NO2 Binding Mode upon CuII→ CuI Reduction. Inorganic chemistry 2013, 52 (19), 11084-11095.
26. Casella, L.; Carugo, O.; Gullotti, M.; Doldi, S.; Frassoni, M., Synthesis, structure, and reactivity of model complexes of copper nitrite reductase. Inorganic chemistry 1996, 35 (5), 1101-1113.
27. Monzani, E.; Koolhaas, G. A. A.; Spandre, A.; Leggieri, E.; Casella, L.; Gullotti, M.; Nardin, G.; Randaccio, L.; Fontani, M.; Zanello, P., Binding of nitrite and its reductive activation to nitric oxide at biomimetic copper centers. JBIC Journal of Biological Inorganic Chemistry 2000, 5 (2), 251-261.
28. Beretta, M.; Bouwman, E.; Casella, L.; Douziech, B.; Driessen, W. L.; Gutierrez-Soto, L.; Monzani, E.; Reedijk, J., Copper complexes of a new tridentate imidazole-containing ligand: spectroscopy, structures and nitrite reductase reactivity: The molecular structures of [Cu (biap)(NO2) 2] and [Cu (biap) Br2]. Inorganica Chimica Acta 2000, 310 (1), 41-50.
29. Yokoyama, H.; Yamaguchi, K.; Sugimoto, M.; Suzuki, S., CuI and CuII Complexes Containing Nitrite and Tridentate Aromatic Amine Ligand as Models for the Substrate‐Binding Type‐2 Cu Site of Nitrite Reductase. European journal of inorganic chemistry 2005, 2005 (8), 1435-1441.
30. Kujime, M.; Fujii, H., Spectroscopic characterization of reaction intermediates in a model for copper nitrite reductase. Angewandte Chemie International Edition 2006, 45 (7), 1089-1092.
31. Kujime, M.; Izumi, C.; Tomura, M.; Hada, M.; Fujii, H., Effect of a tridentate ligand on the structure, electronic structure, and reactivity of the copper (I) nitrite complex: Role of the conserved three-histidine ligand environment of the type-2 copper site in copper-containing nitrite reductases. Journal of the American Chemical Society 2008, 130 (19), 6088-6098.
32. Halfen, J. A.; Mahapatra, S.; Olmstead, M. M.; Tolman, W. B., Synthetic Analogs of Nitrite Adducts of Copper Proteins: Characterization and Interconversion of Dicopper (I, I) and-(I, II) Complexes Bridged Only by NO2. Journal of the American Chemical Society 1994, 116 (5), 2173-2174.
33. Halfen, J. A.; Tolman, W. B., Synthetic model of the substrate adduct to the reduced active site of copper nitrite reductase. Journal of the American Chemical Society 1994, 116 (12), 5475-5476.


34. Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A. J.; Young, V. G.; Que, L.; Tolman, W. B., Synthetic modeling of nitrite binding and activation by reduced copper proteins. Characterization of copper (I)-nitrite complexes that evolve nitric oxide. Journal of the American Chemical Society 1996, 118 (4), 763-776.
35. Chen, C.-S.; Yeh, W.-Y., Coordination of NO 2− ligand to Cu (i) ion in an O, O-bidentate fashion that evolves NO gas upon protonation: a model reaction relevant to the denitrification process. Chemical Communications 2010, 46 (18), 3098-3100.
36. Chuang, W.-J.; Lin, I.-J.; Chen, H.-Y.; Chang, Y.-L.; Hsu, S. C., Characterization of A New Copper (I)− Nitrito Complex That Evolves Nitric Oxide. Inorganic chemistry 2010, 49 (12), 5377-5384.
37. Kumar, M.; Dixon, N. A.; Merkle, A. C.; Zeller, M.; Lehnert, N.; Papish, E. T., Hydrotris (triazolyl) borate complexes as functional models for Cu nitrite reductase: the electronic influence of distal nitrogens. Inorganic chemistry 2012, 51 (13), 7004-7006.
38. Hsu, S. C.; Chang, Y.-L.; Chuang, W.-J.; Chen, H.-Y.; Lin, I.-J.; Chiang, M. Y.; Kao, C.-L.; Chen, H.-Y., Copper (I) Nitro Complex with an Anionic [HB (3, 5-Me2Pz) 3]− Ligand: A Synthetic Model for the Copper Nitrite Reductase Active Site. Inorganic chemistry 2012, 51 (17), 9297-9308.
39. Woollard-Shore, J. G.; Holland, J. P.; Jones, M. W.; Dilworth, J. R., Nitrite reduction by copper complexes. Dalton Transactions 2010, 39 (6), 1576-1585.
40. Heinecke, J. L.; Khin, C.; Pereira, J. C. M.; Suárez, S. n. A.; Iretskii, A. V.; Doctorovich, F.; Ford, P. C., Nitrite reduction mediated by heme models. Routes to NO and HNO? Journal of the American Chemical Society 2013, 135 (10), 4007-4017.
41. Castro, C. E.; O'Shea, S. K., Activation of nitrite ion by iron (III) porphyrins. Stoichiometric oxygen transfer to carbon, nitrogen, phosphorus, and sulfur. The Journal of Organic Chemistry 1995, 60 (7), 1922-1923.
42. O'Shea, S. K.; Wang, W.; Wade, R. S.; Castro, C. E., Selective oxygen transfers with iron (III) porphyrin nitrite. The Journal of organic chemistry 1996, 61 (18), 6388-6395.
43. Khin, C.; Heinecke, J.; Ford, P. C., Oxygen atom transfer from nitrite mediated by Fe (III) porphyrins in aqueous solution. Journal of the American Chemical Society 2008, 130 (42), 13830-13831.
44. Kurtikyan, T. S.; Hovhannisyan, A. A.; Iretskii, A. V.; Ford, P. C., Six-Coordinate Nitro Complexes of Iron (III) Porphyrins with trans S-Donor Ligands. Oxo-Transfer Reactivity in the Solid State. Inorganic chemistry 2009, 48 (23), 11236-11241.
45. Heinecke, J.; Ford, P. C., Formation of cysteine sulfenic acid by oxygen atom transfer from nitrite. Journal of the American Chemical Society 2010, 132 (27), 9240-9243.


46. Patra, A. K.; Afshar, R. K.; Rowland, J. M.; Olmstead, M. M.; Mascharak, P. K., Thermally Induced Stoichiometric and Catalytic O‐Atom Transfer by a Non‐Heme Iron (III)–Nitro Complex: First Example of Reversible {Fe–NO} 7↔ FeIII‐NO2 Transformation in the Presence of Dioxygen. Angewandte Chemie International Edition 2003, 42 (37), 4517-4521.
47. Afshar, R. K.; Eroy-Reveles, A. A.; Olmstead, M. M.; Mascharak, P. K., Stoichiometric and catalytic secondary O-atom transfer by Fe (III)-NO2 complexes derived from a planar tetradentate non-heme ligand: reminiscence of heme chemistry. Inorganic chemistry 2006, 45 (25), 10347-10354.
48. O’Shea, S. K.; Wall, T.; Lin, D., Activation of nitrite ion by biomimetic iron (III) complexes. Transition Metal Chemistry 2007, 32 (4), 514-517.
49. Cheng, L.; Khan, M. A.; Richter-Addo, G. B.; Powell, D. R., The first unambiguous determination of a nitrosyl-to-nitrite conversion in an iron nitrosyl porphyrin. Chemical Communications 2000, (23), 2301-2302.
50. Munro, O. Q.; Scheidt, W. R., (Nitro) iron (III) porphyrins. EPR detection of a transient low-spin iron (III) complex and structural characterization of an O atom transfer product. Inorganic chemistry 1998, 37 (9), 2308-2316.
51. Wei, Z.; Ryan, M. D., Electrochemistry and spectroelectrochemistry of iron porphyrins in the presence of nitrite. Inorganica Chimica Acta 2001, 314 (1), 49-57.
52. Kurtikyan, T. S.; Hovhannisyan, A. A.; Hakobyan, M. E.; Patterson, J. C.; Iretskii, A.; Ford, P. C., Reactions of nitrogen oxides with the five-coordinate FeIII (porphyrin) nitrito intermediate Fe (Por)(ONO) in sublimed solids. Journal of the American Chemical Society 2007, 129 (12), 3576-3585.
53. Hematian, S.; Siegler, M. A.; Karlin, K. D., Heme/copper assembly mediated nitrite and nitric oxide interconversion. Journal of the American Chemical Society 2012, 134 (46), 18912-18915.
54. Hematian, S.; Siegler, M. A.; Karlin, K. D., Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity. JBIC Journal of Biological Inorganic Chemistry 2014, 19 (4-5), 515-528.
55. Turias, F.; Solà, M.; Falivene, L.; Cavallo, L.; Poater, A., Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI (tmpa)]+. Structural Chemistry 2016, 27 (1), 409-417.
56. Ford, C. L.; Park, Y. J.; Matson, E. M.; Gordon, Z.; Fout, A. R., A bioinspired iron catalyst for nitrate and perchlorate reduction. Science 2016, 354 (6313), 741-743.
57. Moore, C. M.; Szymczak, N. K., Nitrite reduction by copper through ligand-mediated proton and electron transfer. Chemical Science 2015, 6 (6), 3373-3377.

58. Antipov, A. N.; Sorokin, D. Y.; L'VOV, N. P.; Kuenen, J. G., New enzyme belonging to the family of molybdenum-free nitrate reductases. Biochemical journal 2003, 369 (1), 185-189.
59. Antipov, A.; Lyalikova, N.; Khijniak, T.; L'vov, N., Vanadate Reduction by Molybdenum‐Free Dissimilatory Nitrate Reductases from Vanadate‐Reducing Bacteria. IUBMB life 2000, 50 (1), 39-42.
60. Antipov, A. N.; Lyalikova, N. N.; Khijniak, T. V.; L'vov, N. P., Molybdenum‐free nitrate reductases from vanadate‐reducing bacteria. FEBS letters 1998, 441 (2), 257-260.
61. Costa Pessoa, J.; Garribba, E.; Santos, M. F. A.; Santos-Silva, T., Vanadium and proteins: Uptake, transport, structure, activity and function. Coordination Chemistry Reviews 2015, 301-302, 49-86.
62. Rehder, D., Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated? Org Biomol Chem 2008, 6 (6), 957-64.
63. Beda, N.; Nedospasov, A., A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide 2005, 13 (2), 93-97.
64. Tanaka, K., Oxidation of Vanadium (II) by Nitrate Ion. Bulletin of the Chemical Society of Japan 1970, 43 (7), 2030-2038.
65. García-Robledo, E.; Corzo, A.; Papaspyrou, S., A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chemistry 2014, 162, 30-36.
66. Schnetger, B.; Lehners, C., Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent. Marine Chemistry 2014, 160, 91-98.
67. Wang, S.; Lin, K.; Chen, N.; Yuan, D.; Ma, J., Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant. Talanta 2016, 146, 744-8.
68. Woollard, D. C.; Indyk, H. E., Colorimetric determination of nitrate and nitrite in milk and milk powders – Use of vanadium (III) reduction. International Dairy Journal 2014, 35 (1), 88-94.
69. Fulmer, G. R.; Miller, A. J.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 2010, 29 (9), 2176-2179.
70. Hsu, H.-F.; Chu, W.-C.; Hung, C.-H.; Liao, J.-H., The first example of a seven-coordinate vanadium (III) thiolate complex containing the hydrazine molecule, an intermediate of nitrogen fixation. Inorganic chemistry 2003, 42 (23), 7369-7371.

71. Chang, Y. H., Vanadium and Iron Thiolate Chemistry Relevant to Biological Systems NCKU 2011.
72. Lugo-Mas, P.; Dey, A.; Xu, L.; Davin, S. D.; Benedict, J.; Kaminsky, W.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Kovacs, J. A., How does single oxygen atom addition affect the properties of an Fe-nitrile hydratase analogue? The compensatory role of the unmodified thiolate. Journal of the American Chemical Society 2006, 128 (34), 11211-11221.
73. Ou, H. J., Synthesis and Characterization of Iron Nitrosyl Thiolate Complexes / Studies of Nitrite Reduction by Iron Thiolate Complexes (unpublished). NCKU 2017.
74. Li, J.; Banerjee, A.; Pawlak, P. L.; Brennessel, W. W.; Chavez, F. A., Highest recorded N-O stretching frequency for 6-coordinate {Fe-NO}7 complexes: an iron nitrosyl model for His3 active sites. Inorg Chem 2014, 53 (11), 5414-6.
75. Hammes, B. S.; Ramos-Maldonado, D.; Yap, G. P.; Liable-Sands, L.; Rheingold, A. L.; Young, V. G.; Borovik, A., C 3-Symmetric Chiral Amidate Complexes: Effects of Ligand Binding on Cavity Structure. Inorganic chemistry 1997, 36 (15), 3210-3211.
76. Ray, M.; Golombek, A. P.; Hendrich, M. P.; Yap, G. P.; Liable-Sands, L. M.; Rheingold, A., L; Borovik, A., Structure and magnetic properties of trigonal bipyramidal iron nitrosyl complexes. Inorganic Chemistry 1999, 38 (13), 3110-3115.
77. Speelman, A. L.; Lehnert, N., Characterization of a high-spin non-heme {FeNO}(8) complex: implications for the reactivity of iron nitroxyl species in biology. Angew Chem Int Ed Engl 2013, 52 (47), 12283-7.
78. Speelman, A. L.; Zhang, B.; Krebs, C.; Lehnert, N., Structural and Spectroscopic Characterization of a High-Spin {FeNO}(6) Complex with an Iron(IV)-NO(-) Electronic Structure. Angew Chem Int Ed Engl 2016, 55 (23), 6685-8.
79. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P., Mononuclear, binuclear, trinuclear and tetranuclear iron complexes of the N(CH2CH2S)33– (NS3) ligand with nitrosyl co-ligands. Journal of the Chemical Society, Dalton Transactions 2002, (12), 2473-2482.
80. Conradie, J.; Quarless, D. A.; Hsu, H.-F.; Harrop, T. C.; Lippard, S. J.; Koch, S. A.; Ghosh, A., Electronic structure and FeNO conformation of nonheme iron-thiolate-NO complexes: An experimental and DFT study. Journal of the American Chemical Society 2007, 129 (34), 10446-10456.
81. Lu, T. T.; Chen, C. H.; Liaw, W. F., Formation of the distinct redox-interrelated forms of nitric oxide from reaction of dinitrosyl iron complexes (DNICs) and substitution ligands. Chemistry 2010, 16 (27), 8088-95.
82. Kuo, J.-T., Syntheses of Iron and Vanadium Nitrosyl Thiolate Complexes via the Reduction of Nitrate/Nitrite. NCKU 2012.
83. Bottomley, F.; Darkwa, J.; White, P. S., Reactions of bis (cyclopentadienyl) vanadium derivatives with nitrogen mono-oxide and the crystal structure of an oxo-bridged nitrosyl complex of vanadium. Journal of the Chemical Society, Dalton Transactions 1985, (7), 1435-1442.
84. Wieghardt, K.; Kleine-Boymann, M.; Swiridoff, W.; Nuber, B.; Weiss, J., Kinetics and mechanism of the equilibration reaction between (2, 2′, 2 ″-nitrilotriethoxy) nitrosylvanadate (1–) and cyanide. Crystal structures of sodium (2, 2′, 2 ″-nitrilotriethoxy) nitrosylvanadate (I)–sodium perchlorate tetrahydrate and of barium cyano (2, 2′, 2 ″-nitrilotriethoxy) nitrosylvanadate (I) pentahydrate. Journal of the Chemical Society, Dalton Transactions 1985, (12), 2493-2497.
85. Kitagawa, S.; Munakata, M.; Ueda, M., 51 V NMR studies of vanadium (I) complexes. Equilibria and crystal structure of Na [V (NO)(N (CH 2 CH 2 O) 3)] and its derivatives. Inorganica Chimica Acta 1989, 164 (1), 49-53.
86. Hayton, T. W.; Daff, P. J.; Legzdins, P.; Rettig, S. J.; Patrick, B. O., Synthesis, Characterization, and Solution Redox Properties of (trimpsi) M (CO) 2 (NO) Complexes [M= V, Nb, Ta; trimpsi= tBuSi (CH2PMe2) 3]. Inorganic chemistry 2002, 41 (16), 4114-4126.
87. Hayton, T. W.; Legzdins, P.; Patrick, B. O., Differing Reactivities of (trimpsi) M (CO) 2 (NO) Complexes [M= V, Nb, Ta; trimpsi= t BuSi (CH2PMe2) 3] with Halogens and Halogen Sources. Inorganic chemistry 2002, 41 (21), 5388-5396.
88. Hayton, T. W.; Patrick, B. O.; Legzdins, P., Reactivity of (trimpsi) V (NO) X2 Complexes (X= Cl, Br, I; trimpsi= tBuSi (CH2PMe2) 3). Synthesis of the First Group 5 Alkyl Nitrosyls. Organometallics 2004, 23 (4), 657-664.
89. Manxzer, L.; Deaton, J.; Sharp, P.; Schrock, R., 31. Tetragtdrfuran Complexes of Selected Early Transition Metals. Inorganic Syntheses, Volume 21 1982, 135-140.
90. Chu, W.-C.; Wu, C.-C.; Hsu, H.-F., Catalytic reduction of hydrazine to ammonia by a vanadium thiolate complex. Inorganic chemistry 2006, 45 (8), 3164-3166.
91. Chang, Y. H.; Chan, P. M.; Tsai, Y. F.; Lee, G. H.; Hsu, H. F., Catalytic reduction of hydrazine to ammonia by a mononuclear iron(II) complex on a tris(thiolato)phosphine platform. Inorg Chem 2014, 53 (2), 664-6.
92. Chang, K. C.; Huang, C. J.; Chang, Y. H.; Wu, Z. H.; Kuo, T. S.; Hsu, H. F., Reactivity of a Fe(III)-Bound Methoxide Supported with a Tris(thiolato)phosphine Ligand: Activation of C-Cl Bond in CH2Cl2 by Nucleophilic Attack of a Fe(III)-OCH3 Moiety. Inorg Chem 2016, 55 (2), 566-72.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-01-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-01-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw