進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2201201520375800
論文名稱(中文) 足底感覺對高齡糖尿病患者坐到站動作控制的影響
論文名稱(英文) The Effect of Plantar Sensitivity on Movement Control of Sit-to-Stand in Older Adults with Diabetes
校院名稱 成功大學
系所名稱(中) 物理治療學系
系所名稱(英) Department of Physical Therapy
學年度 103
學期 1
出版年 104
研究生(中文) 陳宜紋
研究生(英文) I-Wen Chen
學號 T66014022
學位類別 碩士
語文別 英文
論文頁數 70頁
口試委員 指導教授-林桑伊
口試委員-楊宜青
口試委員-蔡一如
口試委員-林昭宏
中文關鍵字 坐到站  糖尿病  足底感覺  動作控制  加速度 
英文關鍵字 Sit-to-stand  Diabetes  Plantar sensitivity  Movement control  Acceleration 
學科別分類
中文摘要 研究背景與目的: 糖尿病是在老人族群中常見的慢性疾病之一,而長期患有糖尿病會造成周邊神經病變,此問題經常是從足底感覺的缺失開始,且過去文獻已經發現此缺失會對患者的日常生活功能有負面影響。五次坐到站是一項可以反映老年人日常生活功能的測試,許多文獻也已證實此項測試是預測老年人未來功能是否會喪失的重要指標。了解患有糖尿病的老年人如何執行五次坐到站可以協助澄清此類患者執行此動作時動作控制的問題,因此,本研究旨在探討健康高齡者、糖尿病未有足底感覺缺失患者及糖尿病足底感覺缺失患者執行五次坐到站時的動作控制,並進一步探討感覺動作功能對於此項測試的影響。

研究方法: 本研究收取24位健康高齡者及44位糖尿病患者,糖尿病患者又利用Semmes-Weinstein單纖維尼龍絲檢查足底感覺閾值,根據其結果再將受試者細分為有足底感覺缺失或無足底感覺缺失兩組,受試者使用最快速度執行連續五次從椅子上站起來再坐下的動作。儀器部分,本研究將一個取樣頻率為148赫茲的三軸加速規固定於受試者第三腰椎的脊突處,測量身體質心在前後及垂直方向的加速度,而加速度的參數為其範圍和標準差。統計分析方面,使用單因子變異數分析,比較三組受試者在執行五次坐到站及分別五次不同時期(坐到站及站到坐)的總時間、前後及垂直方向加速度是否有差異 之後使用雙因子重複量數變異數分析,比較每次坐-站-坐的時間占總時間的比例三組是否不同。此外也以皮爾森相關係數分析基本資料、感覺動作功能及五次坐到站的表現間的相關,將顯著相關的參數置入多元線性回歸中,探討對五次坐到站表現變異量有顯著貢獻的因子。

結果:在執行五次坐到站過程中,垂直方向的加速度範圍有顯著的組間差異,糖尿病有足底感覺缺失患者較健康高齡者有較小的加速度範圍。比較每次坐-站-坐的時間占總時間的比例,結果顯示所有受試者執行第一次的坐-站-坐時所花費的時間顯著較其他四次長。針對坐到站的時期,糖尿病有足底感覺缺失患者垂直方向的加速度範圍在第一次及第五次顯著較其他兩組小,且在第二到第四次亦顯著較健康高齡者小;針對站到坐的時期,糖尿病有足底感覺缺失患者垂直方向的加速度範圍及標準差在第二次至第四次皆顯著較健康高齡者小,另外,在第四次時足底感覺缺失患者垂直方向的加速度範圍亦顯著較糖尿病無感覺缺失患者小。在控制年齡、性別及糖尿病發病時間後統計分析結果顯示,膝伸直肌力可以多貢獻15.9%五次坐到站總時間的變異量。

結論: 因加速度是反映執行動作時速度變化的大小,糖尿病有足底感覺缺失的患者有較小的加速度,代表著此族群的高齡者改變速度的能力下降,而如此的動作控制能力限制,可能是為了代償足底感覺缺失造成平衡控制問題所採取的一種謹慎策略。
英文摘要 Background and purpose: Diabetes mellitus (DM) is one of the major chronic diseases in the elderly population. Chronic DM could result in peripheral neuropathy which begins with impaired plantar cutaneous sensation. This impairment has been found to have negative effects on the ability to perform daily activities. The five times sit-to-stand (FTSS) is a commonly used measure to reflect the functional capacity of older adults and has been shown to be a strong predictor of future functional loss. The purposes of this study were first to investigate the differences in the control of FTSS between healthy and diabetic older adults with and without plantar insensitivity and further to determine to what extent sensorimotor function affected the FTSS performance.

Methods: Twenty-four healthy (CON) and 44 diabetic (DM) older adults participated in this study. The DM subjects were further categorized into having plantar insensitivity (DM-PI, n=22) or not (DM-nonPI, n=22) according to the results of a plantar cutaneous sensation test using Semmes-Weinstein monofilaments. For the FTSS, subjects were instructed to stand up from a seated position and then sit back down for 5 repetitions consecutively at their maximal speeds. An accelerometer with a sampling rate of 148 Hz was placed at the spinous process of the third lumbar vertebrae to measure the acceleration of body’s center of mass in the anterior-posterior (AP) and vertical directions. The acceleration parameters were the range and standard deviation (SD) of the AP and vertical directions. One-way ANOVAs were conducted to analyze the duration and acceleration of vertical and AP directions of total FTSS and each phase (sit-to-stand and stand-to-sit) of the five repetitions. The percentages of total time in each repetition were analyzed by two-way repeated measure ANOVAs. A multiple linear regression analysis was used to investigate the contribution of sensorimotor function on the performance of FTSS in DM patients.

Results: During the FTSS, the overall range of vertical acceleration had significant group differences, with smaller range in DM-PI than CON. Compared the percentage of total time spent in each repetition, the first repetition required significantly longer time than the other repetitions for all the subjects. In the sit-to-stand phase, the vertical acceleration range of DM-PI was significantly smaller than CON and DM-nonPI in the first and last repetitions, smaller than CON in the second through fourth repetitions. In the stand-to-sit phase, the acceleration range and SD of the vertical direction in the second and third repetitions were significantly smaller in DM-PI than CON. In the fourth repetition, the range in DM-PI was significantly smaller than CON and DM-nonPI and the SD was also significantly smaller in DM-PI than CON. After controlling for age, gender and duration of diabetes, knee extensors muscle strength added significant contributions to the FTSS total time.

Conclusion: Since acceleration is a reflection of how fast an individual changes movement velocity, the smaller acceleration in diabetic older adults with plantar insensitivity indicated that these older adults had a reduced capacity in changing the velocity. These changes in movement control could be a cautious strategy to compensate for poorer balance control related to plantar insensitivity.
論文目次 Abstract........ I
中文摘要........III
誌謝........V
Contents........ VI
List of tables........VIII
List of figures........IX

Chapter 1. Introduction........1
1.1 Introduction of diabetes mellitus and diabetic neuropathy........1
1.2 Diabetic neuropathy-induced sensorimotor deficits and imbalance........2
1.3 Plantar insensitivity and locomotion........3
1.4 Movement features of sit-to-stand (STS)........4
1.5 Five times sit-to-stand (FTSS)........7
1.6 Motivation........8

Chapter 2. Research Designs and Methodology........10
2.1 The Setting........10
2.2 Research Design........10
2.3 Participants ........10
2.4 Procedure........11
2.4.1 Physical examination........11
2.4.2 Five Times Sit-to-Stand test (FTSS)........ 15
2.5 Instrumentation........16
2.6 Pilot study........18
2.7 Data reduction........23
2.8 Statistical analysis........26

Chapter 3. Results........28
3.1 Demographics........28
3.2 Overall performance........31
3.3 Performance of individual repetition – Sit-to-stand phase........31
3.4 Performance of individual repetition – Stand-to-sit phase........42
3.5 Regression........50

Chapter 4. Discussion........51
4.1 Total time........51
4.2 Acceleration........54
4.3 Contributing factors to task performance........56

Chapter 5. Conclusion........59
References........60
參考文獻 1.Prevalence of diabetes in Taiwan, 2013. Taiwan: Chinese Taipei Diabetes Association; 2014.
2.Statistic on cause of death 2013. Taiwan: Ministry of Health and Welfare; 2014.
3.Armstrong WJ, McGregor SJ, Yaggie JA, Bailey JJ, Johnson SM, Goin AM et al. Reliability of mechanomyography and triaxial accelerometry in the assessment of balance. J Electromyogr Kinesiol. 20(4):726-31, 2010.
4.Baer GD, Ashburn AM. Trunk movements in older subjects during sit-to-stand. Arch Phys Med Rehabil. 76(9):844-9, 1995.
5.Barber MA, Conolley J, Spaulding CM, Dellon AL. Evaluation of pressure threshold prior to foot ulceration: one-versus two-point static touch. J Am Podiatr Med Assoc. 91(10):508-14, 2001.
6.Batista FS, Gomes GA, D'Elboux MJ, Cintra FA, Neri AL, Guariento ME et al. Relationship between lower-limb muscle strength and functional independence among elderly people according to frailty criteria: a cross-sectional study. Sao Paulo Med J. 132(5):282-9, 2014.
7.Berger RA, Riley PO, Mann RW, Hodge WA. Total body dynamics in ascending stairs and rising from a chair following total knee arthroplasty. Trans Orthop Res Soc. 13:542, 1988.
8.Billot M, Handrigan GA, Simoneau M, Corbeil P, Teasdale N. Short term alteration of balance control after a reduction of plantar mechanoreceptor sensation through cooling. Neurosci Lett. 535:40-4, 2013.
9.Birke JA, Sims DS. Plantar sensory threshold in the ulcerative foot. Lepr Rev. 57(3):261-7, 1986.
10.Bohannon RW. Measurement of sit-to-stand among older adults. Top Geriatr Rehabil. 28(1):11-6, 2012.
11.Bohannon RW, Bubela DJ, Magasi SR, Wang YC, Gershon RC. Sit-to-stand test: Performance and determinants across the age-span. Isokinet Exerc Sci. 18(4):235-40, 2010.
12.Bonnet C, Carello C, Turvey MT. Diabetes and postural stability: review and hypotheses. J Mot Behav. 41(2):172-90, 2009.
13.Boucher P, Teasdale N, Courtemanche R, Bard C, Fleury M. Postural stability in diabetic polyneuropathy. Diabetes Care. 18(5):638-45, 1995.
14.Branch LG, Meyers AR. Assessing physical function in the elderly. Clin Geriatr Med. 3(1):29-51, 1987.
15.Carr JH, Shepherd RB. Neurological rehabilitation: optimizing motor performance. 2nd ed. Edinburgh: Churchill Livingstone; 2010.
16.Cavanagh PR, Simoneau GG, Ulbrecht JS. Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. J Biomech. 26 Suppl 1:23-40, 1993.
17.Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS. The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil. 79(9):1043-6, 1998.
18.Cheng WY, Jiang YD, Chuang LM, Huang CN, Heng LT, Wu HP et al. Quantitative sensory testing and risk factors of diabetic sensory neuropathy. J Neurol. 246(5):394-8, 1999.
19.Csuka M, McCarty DJ. Simple method for measurement of lower extremity muscle strength. Am J Med. 78(1):77-81, 1985.
20.Dubost V, Beauchet O, Manckoundia P, Herrmann F, Mourey F. Decreased trunk angular displacement during sitting down: an early feature of aging. Phys Ther. 85(5):404-12, 2005.
21.Eils E, Behrens S, Mers O, Thorwesten L, Volker K, Rosenbaum D. Reduced plantar sensation causes a cautious walking pattern. Gait Posture. 20(1):54-60, 2004.
22.Feng Y, Schlosser FJ, Sumpio BE. The Semmes Weinstein monofilament examination as a screening tool for diabetic peripheral neuropathy. J Vasc Surg. 50(3):675-82, 2009.
23.Fujimoto M, Chou LS. Dynamic balance control during sit-to-stand movement: an examination with the center of mass acceleration. J Biomech. 45(3):543-8, 2012.
24.Galan-Mercant A, Cuesta-Vargas AI. Differences in trunk accelerometry between frail and nonfrail elderly persons in sit-to-stand and stand-to-sit transitions based on a mobile inertial sensor. JMIR Mhealth Uhealth. 1(2):e21, 2013.
25.Giacomini PG, Bruno E, Monticone G, Di Girolamo S, Magrini A, Parisi L et al. Postural rearrangement in IDDM patients with peripheral neuropathy. Diabetes Care. 19(4):372-4, 1996.
26.Gill TM, Williams CS, Tinetti ME. Assessing risk for the onset of functional dependence among older adults: the role of physical performance. J Am Geriatr Soc. 43(6):603-9, 1995.
27.Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 49(2):M85-94, 1994.
28.Hislop HJ, Montgomery J. Daniels and Worthingham's muscle testing: techniques of manual examination. 8 ed. Philadelphia: WB Saunders; 2007.
29.Hoehne A, Ali S, Stark C, Brueggemann GP. Reduced plantar cutaneous sensation modifies gait dynamics, lower-limb kinematics and muscle activity during walking. Eur J Appl Physiol. 112(11):3829-38, 2012.
30.Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 35 Suppl 2:ii7-ii11, 2006.
31.Horak FB, Hlavacka F. Somatosensory loss increases vestibulospinal sensitivity. J Neurophysiol. 86(2):575-85, 2001.
32.Horlings CG, Kung UM, van Engelen BG, Voermans NC, Hengstman GJ, van der Kooi AJ et al. Balance control in patients with distal versus proximal muscle weakness. Neuroscience. 164(4):1876-86, 2009.
33.Howcroft J, Kofman J, Lemaire ED. Review of fall risk assessment in geriatric populations using inertial sensors. J Neuroeng Rehabil. 10, 2013.
34.Inglis JT, Horak FB, Shupert CL, Jones-Rycewicz C. The importance of somatosensory information in triggering and scaling automatic postural responses in humans. Exp Brain Res. 101(1):159-64, 1994.
35.Janssen WG, Bussmann HB, Stam HJ. Determinants of the sit-to-stand movement: a review. Phys Ther. 82(9):866-79, 2002.
36.Janssen WGM, Kulcu DG, Horernans HLD, Stam HJ, Bussmann JBJ. Sensitivity of accelerometry to assess balance control during sit-to-stand movement. IEEE Trans Neural Syst Rehabil Eng. 16(5):479-84, 2008.
37.Judd DL, Dennis DA, Thomas AC, Wolfe P, Dayton MR, Stevens-Lapsley JE. Muscle strength and functional recovery during the first year after THA. Clin Orthop Relat Res. 472(2):654-64, 2014.
38.Karinkanta S, Heinonen A, Sievanen H, Uusi-Rasi K, Kannus P. Factors predicting dynamic balance and quality of life in home-dwelling elderly women. Gerontology. 51(2):116-21, 2005.
39.Katoulis EC, Ebdon-Parry M, Hollis S, Harrison AJ, Vileikyte L, Kulkarni J et al. Postural instability in diabetic neuropathic patients at risk of foot ulceration. Diabet Med. 14(4):296-300, 1997.
40.Kavanagh JJ, Menz HB. Accelerometry: A technique for quantifying movement patterns during walking. Gait Posture. 28(1):1-15, 2008.
41.Kavounoudias A, Roll R, Roll JP. The plantar sole is a 'dynamometric map' for human balance control. Neuroreport. 9(14):3247-52, 1998.
42.Kawagoe S, Tajima N, Chosa E. Biomechanical analysis of effects of foot placement with varying chair height on the motion of standing up. J Orthop Sci. 5(2):124-33, 2000.
43.Kelley D, Dainis A, Wood G. Mechanics and muscular dynamics of rising from a seated position. In: Komi P, editor. Biomechanics VB. Baltimore, Maryland: University Park Press; 1976.
44.Kerr A, Durward B, Kerr KM. Defining phases for the sit-to-walk movement. Clin Biomech (Bristol, Avon). 19(4):385-90, 2004.
45.Khemlani MM, Carr JH, Crosbie WJ. Muscle synergies and joint linkages in sit-to-stand under two initial foot positions. Clin Biomech (Bristol, Avon). 14(4):236-46, 1999.
46.Kobsar D, Olson C, Paranjape R, Hadjistavropoulos T, Barden JM. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait Posture. 39(1):553-7, 2014.
47.Kralj A, Jaeger RJ, Munih M. Analysis of standing up and sitting down in humans: definitions and normative data presentation. J Biomech. 23(11):1123-38, 1990.
48.Lehmann K, Sunnerhagen KS, Willen C. Postural control in persons with late effects of polio. Acta Neurol Scand. 113(1):55-61, 2006.
49.Lim KB, Kim DJ, Noh JH, Yoo J, Moon JW. Comparison of balance ability between patients with type 2 diabetes and with and without peripheral neuropathy. PM R. 6(3):209-14, 2014.
50.Lord SR, Allen GM, Williams P, Gandevia SC. Risk of falling: Predictors based on reduced strength in persons previously affected by polio. Arch Phys Med Rehabil. 83(6):757-63, 2002.
51.Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 57(8):M539-43, 2002.
52.Maranesi E, Ghetti G, Rabini RA, Fioretti S. Functional reach test: Movement strategies in diabetic subjects. Gait Posture. 39(1):501-5, 2014.
53.Martinez-Mendez R, Sekine M, Tamura T. Postural sway parameters using a triaxial accelerometer: comparing elderly and young healthy adults. Comput Methods Biomech Biomed Engin. 15(9):899-910, 2012.
54.Mathie MJ, Coster AC, Lovell NH, Celler BG. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas. 25(2):R1-20, 2004.
55.Maty SC, Fried LP, Volpato S, Williamson J, Brancati FL, Blaum CS. Patterns of disability related to diabetes mellitus in older women. J Gerontol A Biol Sci Med Sci. 59(2):148-53, 2004.
56.McCarthy EK, Horvat MA, Holtsberg PA, Wisenbaker JM. Repeated chair stands as a measure of lower limb strength in sexagenarian women. J Gerontol A Biol Sci Med Sci. 59(11):1207-12, 2004.
57.McDonald PV, van Emmerik RE, Newell KM. The effects of practice on limb kinematics in a throwing task. J Mot Behav. 21(3):245-64, 1989.
58.McKeon PO, Hertel J. Diminished plantar cutaneous sensation and postural control. Percept Mot Skills. 104(1):56-66, 2007.
59.Menz HB, Morris ME, Lord SR. Foot and ankle characteristics associated with impaired balance and functional ability in older people. J Gerontol A Biol Sci Med Sci. 60(12):1546-52, 2005.
60.Meyer PF, Oddsson LI, De Luca CJ. The role of plantar cutaneous sensation in unperturbed stance. Exp Brain Res. 156(4):505-12, 2004.
61.Millington PJ, Myklebust BM, Shambes GM. Biomechanical analysis of the sit-to-stand motion in elderly persons. Arch Phys Med Rehabil. 73(7):609-17, 1992.
62.Moe-Nilssen R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: Gait analysis. Clin Biomech (Bristol, Avon). 13(4-5):328-35, 1998.
63.Mourey F, Pozzo T, Rouhier-Marcer I, Didier JP. A kinematic comparison between elderly and young subjects standing up from and sitting down in a chair. Age Ageing. 27(2):137-46, 1998.
64.Mueller MJ. Identifying patients with diabetes mellitus who are at risk for lower-extremity complications: use of Semmes-Weinstein monofilaments. Phys Ther. 76(1):68-71, 1996.
65.Muir BC, Rietdyk S, Haddad JM. Gait initiation: The first four steps in adults aged 20-25 years, 65-79 years, and 80-91 years. Gait Posture. 39(1):490-4, 2014.
66.Munro BJ, Steele JR, Bashford GM, Ryan M, Britten N. A kinematic and kinetic analysis of the sit-to-stand transfer using an ejector chair: implications for elderly rheumatoid arthritic patients. J Biomech. 31(3):263-71, 1998.
67.Narayanan MR, Redmond SJ, Scalzi ME, Lord SR, Celler BG, Lovell NH. Longitudinal falls-risk estimation using tiaxial accelerometry. IEEE Trans Biomed Eng. 57(3):534-41, 2010.
68.Nardone A, Grasso M, Schieppati M. Balance control in peripheral neuropathy: are patients equally unstable under static and dynamic conditions? Gait Posture. 23(3):364-73, 2006.
69.Nurse MA, Nigg BM. The effect of changes in foot sensation on plantar pressure and muscle activity. Clin Biomech (Bristol, Avon). 16(9):719-27, 2001.
70.Nyberg L, Gustafson Y. Patient falls in stroke rehabilitation. A challenge to rehabilitation strategies. Stroke. 26(5):838-42, 1995.
71.Pai Y-C, Naughton BJ, Chang RW, Rogers MW. Control of body centre of mass momentum during sit-to-stand among young and elderly adults. Gait Posture. 2(2):109-16, 1994.
72.Pai YC, Rogers MW. Control of body mass transfer as a function of speed of ascent in sit-to-stand. Med Sci Sports Exerc. 22(3):378-84, 1990.
73.Perry SD. Evaluation of age-related plantar-surface insensitivity and onset age of advanced insensitivity in older adults using vibratory and touch sensation tests. Neurosci Lett. 392(1-2):62-7, 2006.
74.Perry SD, Santos LC, Patla AE. Contribution of vision and cutaneous sensation to the control of centre of mass (COM) during gait termination. Brain Res. 913(1):27-34, 2001.
75.Reisman DS, Scholz JP, Schoner G. Coordination underlying the control of whole body momentum during sit-to-stand. Gait Posture. 15(1):45-55, 2002.
76.Richardson JK, Thies SB, DeMott TK, Ashton-Miller JA. A comparison of gait characteristics between older women with and without peripheral neuropathy in standard and challenging environments. J Am Geriatr Soc. 52(9):1532-7, 2004.
77.Rodosky MW, Andriacchi TP, Andersson GB. The influence of chair height on lower limb mechanics during rising. J Orthop Res. 7(2):266-71, 1989.
78.Roebroeck ME, Doorenbosch CAM, Harlaar J, Jacobs R, Lankhorst GJ. Biomechanics and muscular activity during sit-to-stand transfer. Clin Biomech (Bristol, Avon). 9(4):235-44, 1994.
79.Saadeh MY, Trabia MB. Identification of a force-sensing resistor for tactile applications. J Intel Mat Syst Str. 24(7):813-27, 2013.
80.Schenkman M, Berger RA, Riley PO, Mann RW, Hodge WA. Whole-body movements during rising to standing from sitting. Phys Ther. 70(10):638-48, 1990.
81.Schenkman M, Riley PO, Pieper C. Sit to stand from progressively lower seat heights -- alterations in angular velocity. Clin Biomech (Bristol, Avon). 11(3):153-8, 1996.
82.Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 87(1):4-14, 2010.
83.Shepherd RB, Koh HP. Some biomechanical consequences of varying foot placement in sit-to-stand in young women. Scand J Rehabil Med. 28(2):79-88, 1996.
84.Simmons RW, Richardson C. The effects of muscle activation on postural stability in diabetes mellitus patients with cutaneous sensory deficit in the foot. Diabetes Res Clin Pract. 53(1):25-32, 2001.
85.Simmons RW, Richardson C, Pozos R. Postural stability of diabetic patients with and without cutaneous sensory deficit in the foot. Diabetes Res Clin Pract. 36(3):153-60, 1997.
86.Simoneau GG, Ulbrecht JS, Derr JA, Becker MB, Cavanagh PR. Postural instability in patients with diabetic sensory neuropathy. Diabetes Care. 17(12):1411-21, 1994.
87.Smieja M, Hunt DL, Edelman D, Etchells E, Cornuz J, Simel DL. Clinical examination for the detection of protective sensation in the feet of diabetic patients. International Cooperative Group for Clinical Examination Research. J Gen Intern Med. 14(7):418-24, 1999.
88.Sparrow WA, Tirosh O. Gait termination: a review of experimental methods and the effects of ageing and gait pathologies. Gait Posture. 22(4):362-71, 2005.
89.Tan LS. The clinical use of the 10g monofilament and its limitations: a review. Diabetes Res Clin Pract. 90(1):1-7, 2010.
90.Tesfaye S. Recent advances in the management of diabetic distal symmetrical polyneuropathy. J Diabetes Invest. 2(1):33-42, 2011.
91.Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 33(10):2285-93, 2010.
92.Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 28:8-14, 2012.
93.Turcot K, Allet L, Golay A, Hoffmeyer P, Armand S. Investigation of standing balance in diabetic patients with and without peripheral neuropathy using accelerometers. Clin Biomech (Bristol, Avon). 24(9):716-21, 2009.
94.Turvey MT, Fitch HL, Tuller B. The Bernstein Perspective: I. The Problems of Degrees of freedom and Context-constrained Variability. In: Scott Kelso JA, editor. Human Motor Behavior: An Introduction. Hillsdale, N.J.: Erlbaum Associates; 1982. p 239-52.
95.van Schie CH. Neuropathy: mobility and quality of life. Diabetes Metab Res Rev. 24 Suppl 1:S45-51, 2008.
96.Vaz MM, Costa GC, Reis JG, Junior WM, Albuquerque de Paula FJ, Abreu DC. Postural control and functional strength in patients with type 2 diabetes mellitus with and without peripheral neuropathy. Arch Phys Med Rehabil. 94(12):2465-70, 2013.
97.Vereijken B, Emmerik REAv, Whiting HTA, Newell KM. Free(z)ing Degrees of Freedom in Skill Acquisition. J Mot Behav. 24(1):133-42, 1992.
98.Veves A, Murray HJ, Young MJ, Boulton AJ. The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study. Diabetologia. 35(7):660-3, 1992.
99.Vinik AI, Pittenger GL, McNitt P, Stansberry KB. Diabetic Neuropathies: An overview of clinical aspects, pathogenesis, and treatment. In: LeRoith D, Taylor SI, Olefsky JM, editors. Diabetes Mellitus: A Fundamental and Clinical Text. 2 ed. Philadelphia: Lippincott Williams & Wilkins; 2000. p 910-22.
100.Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Phys Ther. 85(10):1034-45, 2005.
101.Yoshioka S, Nagano A, Hay DC, Fukashiro S. The minimum required muscle force for a sit-to-stand task. J Biomech. 45(4):699-705, 2012.
102.Zhang F, Ferrucci L, Culham E, Metter EJ, Guralnik J, Deshpande N. Performance on five times sit-to-stand task as a predictor of subsequent falls and disability in older persons. J Aging Health. 25(3):478-92, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-02-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw