進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2201201515220900
論文名稱(中文) 具奈米金屬網電極之氧化鎂鋅金屬-半導體-金屬紫外光檢測器之研究
論文名稱(英文) Investigation of MgZnO-based metal-semiconductor-metal ultraviolet photodetectors with nanomesh electrode
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 103
學期 1
出版年 104
研究生(中文) 林恒裕
研究生(英文) Heng-Yu Lin
學號 Q16014312
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-李清庭
口試委員-李欣縈
口試委員-劉代山
中文關鍵字 氧化鎂鋅  金屬-半導體-金屬光檢測器  奈米金屬網  奈米球微影術  斜向蒸鍍方法  紫外光檢測器  氣相冷凝系統 
英文關鍵字 Magnesium zinc oxide  Metal-semiconductor-metal photodetectors  Nanomesh electrode  Nanosphere lithography  Oblique evaporation method 
學科別分類
中文摘要 本研究結合傳統奈米球微影技術(Nanosphere lithography)及斜向蒸鍍方法(Oblique evaporation method)製作高穿透率且低片電阻值之奈米金屬網(Nanomesh electrode),並以低溫氣相冷凝系統蒸鍍高品質之氧化鎂鋅(Magnesium zinc oxide, MgZnO)材料以製備氧化鎂鋅金屬-半導體-金屬紫外光檢測器(Metal-Semiconductor-Metal ultraviolet Photodetectors, MSM UV PDs)。相較於透明導電膜與薄金屬在紫外光波段具有高吸收特性,奈米金屬網之金屬覆蓋範圍僅占整體紫外光檢測器元件面積約10%,因此奈米金屬網在紫外光波段具有較高之穿透率及較低之片電阻。為進一步研究奈米金屬網的功能,不同尺寸之奈米金屬網被應用於氧化鎂鋅金屬-半導體-金屬紫外光檢測器,依據實驗結果以1500nm奈米球尺寸製作之奈米金屬網具有最佳響應度(Responsivity)。在偏壓5伏特條件,相較於薄金屬薄膜元件在330nm波長之響應度僅0.135 A/W,奈米金屬網元件在330nm波長之響應度則提升至0.248 A/W,而外部量子效率(External Quantum Efficiency)與內部增益(Internal Gain)之相對應乘積也由50.75 %增加為93.23 %,相較於薄金薄膜元件之紫外光-可見光拒斥比(Rejection ratio)為1748,應用奈米金屬網元件之紫外光-可見光拒斥比則可提升至2380,其等效功率(Noise equivalent power)則由3.19×10-10 W降至2.33×10-10 W,歸一化檢測度(Normalized detectivity)由1.78×1010 cmHz0.5W-1增加至2.43×1010 cmHz0.5W-1。
英文摘要 In this study, the nanosphere lithography technique and the oblique evaporation method were utilized to fabricate the high transmittance and low sheet resistance nanomesh electrode, and the high quality MgZnO-based films were deposited as the absorption layer using the vapor cooling condensation system to complete the MgZnO-based metal-semiconductor-metal ultraviolet photodetectors (MSM-UV-PDs). Compared with the high absorption property in the UV wavelength range of the transparent conductive films and the thin metal films, the nanomesh electrode possessed the advantages of the higher transmittance at the UV wavelength range owing to the about 10% of the metal coverage region of the nanomesh electrode on the MSM-UV-PDs device. To further investigate the function of nanomesh electrode, the various-size nanomesh electrode were applied on the MgZnO-based MSM-UV-PDs. Under the operating voltage of 5V, the responsivity at the wavelength of 330nm and the UV-visible rejection of the MgZnO-based MSM-UV-PDs with the nanomesh electrode were respectively promoted from 0.135 A/W and 1748 to 0.248 A/W and 2380 compared with the MgZnO-based MSM-PDs with the thin metal films.
論文目次 摘要……………………………………………………………………………I
Abstract………………………………………………………………………III
Extended Abstract……………………………………………………………V
致謝…………………………………………………………………………XI
目錄…………………………………………………………………………XIII
表目錄……………………………………………………………………XVII
圖目錄……………………………………………………………………XVIII

第一章 序論 / 1
 1.1氧化鎂鋅材料…………………………………………………………1
 1.2 紫外光檢測器…………………………………………………………2
 1.3 研究動機 ………………………………………………………………3
參考文獻……………………………………………………………………5

第二章 實驗原理簡介 / 8
 2.1奈米球微影術…………………………………………………………8
  2.1.1 奈米球自組裝排列………………………………………………8
  2.1.2 奈米球微影術…………………………………………………9
 2.2金屬-半導體接面理論…………………………………………………10
  2.2.1 歐姆接觸…………………………………………………………10
  2.2.2 蕭特基接觸………………………………………………………11
 2.3 光檢測器工作原理………………………………………………14
  2.3.1 金屬-半導體-金屬光檢測器工作原理…………………………15
  2.3.2 電壓電流特性曲線………………………………………………15
  2.3.3光檢測器之響應度、外部量子效益與內部增益………………16
 2.4 低頻雜訊………………………………………………………………18
  2.4.1 熱雜訊……………………………………………………………19
  2.4.2 產生-復合雜訊…………………………………………………19
  2.4.3閃爍雜訊…………………………………………………………20
  2.4.4等效雜訊功率及歸一化檢測度…………………………………21
參考文獻…………………………………………………………………32

第三章 元件製程 / 35
 3.1 製程機台………………………………………………………35
  3.1.1 電子束蒸鍍系統 ………………………………………………35
  3.1.2 氣相冷凝系統 …………………………………………………35
  3.1.3 磁控射頻共濺鍍系統…………………………………………36
3.1.4 電漿清潔系統…………………………………………………37
 3.2 量測儀器………………………………………………………37
  3.2.1掃描式電子顯微鏡………………………………………………37
  3.2.2 UV-VIS-NIR分光光譜儀……………………………………38
  3.2.3直流響應度量測系統……………………………………………38
  3.2.4低頻雜訊量測系統………………………………………………39
 3.3 元件製程…………………………………………………………39
  3.3.1石英玻璃基板之清潔…………………………………………40
  3.3.2背部電極製程 ………………………………………………40
  3.3.3元件吸收層製程………………………………………………41
  3.3.4元件絕緣層製程………………………………………………42
  3.3.5奈米球模板製程………………………………………………42
  3.3.6電漿處理奈米球模板製程……………………………………42
  3.3.7奈米金屬網製程………………………………………………43
  3.3.8量測下針金屬電極製程………………………………………44

第四章 元件特性量測與分析 / 54
 4.1奈米金屬網結構…………………………………………………54
  4.1.1奈米球模板製作及分析……………………………………54
  4.1.2應用斜向蒸鍍法於奈米金屬網之製作……………………55
  4.1.3不同尺寸奈米球模板製作之奈米金屬網…………………55
 4.2薄金屬薄膜元件特性…………………………………………56
  4.2.1 穿透率及片電阻………………………………………………56
  4.2.2 暗電流量測…………………………………………………57
  4.2.3響應度對光波長的關係特性………………………………58
 4.3不同金屬電極元件特性……………………………………59
  4.3.1 穿透率及片電阻………………………………………………60
  4.3.2 暗電流量測…………………………………………………60
  4.3.3響應度對光波長的關係特性………………………………61
 4.4低頻雜訊量測…………………………………………………………62
參考文獻…………………………………………………………………78

第五章 結論 / 79
參考文獻 第一章
[1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci., vol. 50, pp. 293-340, 2005.
[2] G. Heiland, E. Mollwo, and F. Stöckmann, “Electronic processes in zinc oxide,” Solid State Physics, vol. 8, pp. 191-323, 1959.
[3] Y. J. Zeng, Z. Z. Ye, F. Liu, D. Y. Li, Y. F. Lu, W. Jaeger, H. P. He, L. P. Zhu, J. Y. Huang, and B. H. Zhao, “Controllable growth and characterization of ZnO/MgO quasi core-shell quantum dots,” Cryst. Growth Des., vol. 9, pp. 263-266, 2009.
[4] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett., vol. 72, pp. 2466-2468, 1998.
[5] H. A. Chin, I. C. Cheng, C. I. Huang, Y. R. Wu, W. S. Lu, W. L. Lee, J. Z. Chen, K. C. Chiu, and T. S. Lin, “Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process,” J. Appl. Phys., vol. 108, pp. 054503-1-054503-4, 2010.
[6] D.C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, vol. 80, pp. 383-387-4, 2001.
[7] M. Liao, and Y. Koide, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett., vol. 89, pp. 113509-1-113509-3, 2006.
[8] W.W. Liu, B. Yaoa, B.H. Li , Y.F. Li, J. Zheng , Z.Z. Zhang, C.X. Shan, J.Y. Zhang, D.Z. Shen, and X.W. Fan, “MgZnO/ZnO p-n junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy,” Solid State Sci., vol. 12, pp. 1567-1569, 2010.
[9] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet Photodetector Based on MgxZn1-xO Thin Films Deposited by Radio Frequency Magnetron Sputtering,” IEEE Photonics Techno. Lett., vol. 20, pp. 2108-2110, 2008.
[10] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar,and M. Asif Khan, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett. vol. 70, pp. 2277-2279, 1997
[11] L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” Proc. SPIE, vol. 7603, pp. 760310-1-760310-8, 2010.
[12] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim and S. Im, “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” J. Phys. D: Appl. Phys., vol. 41, pp. 135102-1-135102-5, 2008.
[13] K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” J. Appl. Phys., vol. 101, pp. 114508-1-114508-5, 2007.
[14] X. Wang, C. J. Summers, and Z. L. Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett., vol. 4, pp. 423-426, 2004.
[15] Y. K. Su, W. C. Cheng, R. W. Chuang, S. H. Hsu, and B. Y. Chen, “InGaAsN metal-semiconductor-metal photodetectors with transparent indium tin oxide Schottky contact,” Jpn. J. Appl. Phys., vol. 46, pp. 2373-2376, 2007
[16] S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc¸ X. Zhou, M. Tamargo, and R. R. Alfano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain,” Appl. Phys. Lett., vol. 81, pp. 4862-4864, 2002.
[17] L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films, vol. 305, pp. 1-21, 1997.
第二章
[1] C. Vieu, F. Carcenac , A. Pe´pin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo,L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci., vol. 164, pp. 111-117, 2000.
[2] John Meingaiiis, “Focused ion beam technology and applications,” J. Vac. Sci. Technol. B, vol. 469, pp. 469-495, 1987.
[3] Christy L. Haynes and Richard P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B, vol. 105, pp. 5599-5611, 2001.
[4] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature, vol. 361, p. 26, 1993.
[5] R. Micheletto, H. Fukuda, and M. Ohtsut, “A simple method for the production of a two-dimensional, ordered array of small latex particles,” Langmuir, vol. 11, pp. 3333-3336, 1995.
[6] J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloid Surf. A Physicochem. Eng. Asp., vol. 219, pp. 1-6, 2003.
[7] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett., vol. 41, pp. 377-379, 1982.
[8] S. M. Sze, “Physics of semiconductor devices 2nd,” 1987.
[9] S. M. Sze, “Semiconductor device physics and technology,” 2002.
[10] Neamen, “Semiconductor Photonics Principles and Practices,” 2003.
[11] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor devices modeling for VLSI,” 1997.
[12] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
[13] S. O. Kasap, “Optoelectronics and photonics principles and practices,” 2001.
[14] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
[15] S. F. Soares, ”Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, pp. 210-216, 1992.
[16] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
[17] F. N. Hooge, “l/f Noise sources,” IEEE Trans. Electr. Dev., vol. 41, pp. 1926-1935, 1994.
[18] A. A. Balandin, “Noise and fluctuations control in electronics devices,” California, USA, 2002.
第四章
[1] G. B. Smith, G. A. Niklasoon, J. S. E. M. Svensson, and C. G. Granqvist, “Noble-metal-based transparent infrared reflectors: Experiments and theoretical analyses for very thin gold films,” J. Appl. Phys., vol. 59, pp. 571-581, Jul. 1986.
[2] M. L. Theye “Investigation of the optical properties of Au by means of thin semitransparent films,” Phy. Rev. B, vol. 2, pp. 3060-3078, 1970.
[3] L. He and Z. Q. Shi, “Thin metal films deposited at low temperature for optoelectronic device application,” J. Vac. Sci. Technol. A, vol. 14, pp. 704-708, 1996.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw