進階搜尋


下載電子全文  
系統識別號 U0026-2201201510234400
論文名稱(中文) 氧空缺遷移對氧化鈦與氧化鉭非揮發性記憶體電阻轉換特性之影響
論文名稱(英文) Influences of oxygen vacancy drifting on resistive switching behaviors in TiOx and TaOx based nonvolatile memories
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 103
學期 1
出版年 104
研究生(中文) 鍾裕隆
研究生(英文) Yu-Lung Chung
學號 N58961040
學位類別 博士
語文別 英文
論文頁數 98頁
口試委員 指導教授-陳貞夙
召集委員-陳引幹
口試委員-鄭靜
口試委員-吳季珍
口試委員-曾俊元
口試委員-張鼎張
中文關鍵字 氧化鈦  氧化鉭  氧空缺  電阻式記憶體  電阻轉換 
英文關鍵字 TiOx  TaOx  oxygen vacancy  RRAM  resistive switching 
學科別分類
中文摘要 本論文主要是探討氧空缺對價態轉換型和電化學金屬型電阻轉換機制的影響。
本實驗將針對氧化鈦及氧化鉭兩種材料為主的電阻式記憶體做討論,其試片結構分別為Pt/TiOx/Pt/TiOx/Pt (價態轉換型)和Ag/TaOx/Pt (電化學金屬型)。我們藉由觀察兩個元件的電流-電壓曲線,包括electroforming, 單極式電阻轉換,雙極式電阻轉換和抹除電流等特性來瞭解氧空缺的移動對這兩個元件造成的影響。
論文第一部份討論的是以二氧化鈦為基底的記體元件之材料特性及電性。在二氧化鈦為基底的記體元件中觀察到一個明確單極性且單一極性的電阻轉換行為。其中,此TiOx/Pt/TiOx 主動層是經由熱氧化Ti/Pt/Ti疊層所製備。藉由插入中間層Pt會在主動層中產生兩個額外的蕭基能障導致記憶體元件在高電阻態時有整流的特性。實驗結果顯示,氧空缺受電埸驅動移動會影響蕭基能障和導電燈絲 (conduction filament)的組成使元件具有單極性電阻轉換特性。此外,以AFM探針為上電極時,元件整流的特性依然存在,此結果顯示元件整流的特性在奈米維度下仍可使用。
論文第二部份的討論是以二氧化鉭為主的記憶體元件,討論在300 K和100 K溫度區間內electroforming和電阻轉換的行為。同時,也將會區別在此溫度區間銀離子和氧空缺所組成的導電燈絲之間的差異。我們發現不論是electroforming的電壓或是寫入的電壓,其電壓值在100 K時都明顯的高於300 K時的電壓值。藉由觀察脈衝轉換時間和溫度的關係發現銀離子在氧化鉭內移動有很高的活化能,表示銀離子移動速率會隨溫度降低而大幅下降。可知,electroforming的電壓或寫入的電壓在100 K和300 K時的差異是來自於銀離子移動速率的差別。此外,銀離子在高、低溫移動速率的差別也將導致電燈絲在300 K時是由銀所組成,而在100 K時由氧空缺和銀共同組成。氧空缺參與導電燈絲的組成會改變元件抹除電流的特性,從300 K時的緩降 (gradually descending )變成100 K 時的陡降(sharp drop)。此外,當溫度從100 K回到300 K,寫入電壓和抹除電流仍會維持100 K時的特性。此結果顯示導電燈絲的組成對Ag/oxide/Pt系統電阻轉換特性是關鍵的因素。
英文摘要 This dissertation is devoted to study the influence of oxygen vacancy on resistive switching behaviors in the valence change memories (VCM) and electrochemical metallization (ECM) memories.
The VCM and ECM memory devices were prepared with the device structures of Pt/TiOx/Pt/TiOx/Pt and Ag/TaOx/Pt, respectively. The current-voltage (I-V) characteristics including the electroforming, unipolar resistive switching (URS), bipolar resistive switching (BRS) and reset current characters were investigated and understood in terms of the migration of oxygen vacancies in VCM and ECM system.
In the first part this dissertation, the TiOx-based memory devices were fabricated for electrical and material characterization. A distinct unipolar but single-polarity resistive switching behavior is observed in a TiOx/Pt/TiOx active layer, formed by thermal oxidation of a Ti/Pt/Ti stack. Introduction of the Pt mid-layer creates two additional Schottky barriers, which mediate the band bending potential at each metal-oxide interface and attains a rectifying current conduction at the high resistance state (HRS). Experimental evidences proving the single-polarity switching behavior is a combination of bias-induced Schottky barrier modification and conduction filament construction, both associated with the bias-driven migration of oxygen vacancies. In addition, the rectifying conduction behavior is also observed with an AFM-tip as the top electrode (TE), which implies the rectifying property is still valid when miniaturizing the device to nano-meter scale.
In the second part of this dissertation, we explored the electroforming and resistive switching behaviors in the Ag/TaOx/Pt trilayer structure under a continual change of temperatures between 300 K and 100 K to distinguish the contributions of Ag ions and oxygen vacancies in developing of conducting filaments. We found that either electroforming or resistive switching, a significantly higher forming/set voltages is needed as the device is operated at 100 K, as compared to that observed when operating at 300 K. The temperature dependence of the pulsed switching time (tsw) measurement results indicates that larger activation energy (Ea) of Ag diffusion in TaOx (EaeV) will lead to a faster decay of Ag ions mobility in TaOx with decreasing temperature. Thus, the disparity in electroforming/set voltages of Ag/TaOx/Pt operating at 300 K and 100 K can attribute to the mobility difference of Ag ions at 300 K and 100 K. This mobility difference of Ag ions also leads a presence of metallic filament at 300 K while a filament composed of oxygen vacancy and Ag is formed at 100 K.
The presence of oxygen vacancy segment in the conducting filament also modifies the reset current from a gradually descending behavior (at 300 K) to a sharp drop (at 100 K). Furthermore, the characteristic set voltage (Vset) and reset current are irreversible as the operation temperature is brought from 100 K back to 300 K, indicating the critical role of filament constituents on the switching behaviors of Ag/oxide/Pt system.
論文目次 摘要 I
Abstract III
Contents VIII
List of Tables X
List of Figures XI
Abbreviations XV
Chapter 1 Introduction 1
1-1 Back ground and motivation 1
1-2 Thesis organization 2
Chapter 2 Literature review 3
2-1 Volatile and Nonvolatile memories 3
2-2 Resistance random access memory (RRAM) and materials for RRAM 5
2-2-1 Inorganic materials and electrode materials 6
2-2-2 Organic materials 8
2-3 Resistive switching behaviors 10
2-3-1 Unipolar and bipolar resistive switching 10
2-3-2 Reset current characteristics 12
2-4 Resistive switching mechanisms 16
2-4-1 Valence change switching 18
2-4-2 Electrochemical Metallization 23
2-4-3 Interface type switching (Schottky barrier) 26
2-4-4 Simulation study on conducting filament formation/rupture 31
Chapter 3
Single polarity resistive switching in TiOx-based memory device 36
3-1 Introduction 36
3-2 Experiment methods 38
3-3 Results and discussion 40
3-3.1 Material characterization 40
(TEM, GIAXRD and XPS analyses of TiOx/Pt/TiOx films) 40
3-3.2 Current-voltage characteristics of TiOx-based memory 42
3-3.3 Resistive switching mechanism of TiOx-based memory 49
3-4 Summary 50
Chapter 4
Temperature dependence of electroforming and resistive switching behaviors in Ag/TaOx/Pt memory device 62
4-1 Introduction 62
4-2 Experiment methods 64
4-3 Results and discussion 66
4-3.1 TEM analysis of Ag/TaOx/Pt films 66
4-3.2 Current-voltage characteristics of TaOx-based memory 67
4-4 Summary 74
Chpater 5 Conclusions 83
References 86
參考文獻 [1] The International Technology Roadmap for Semiconductors, Emerging Research Devices Section (2013).
[2] J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro and R. S. Williams, "High switching endurance in TaOx memristive devices", Applied Physics Letters, 97, 232102 (2010).
[3] Y. C. Yang, C. Chen, F. Zeng and F. Pan, "Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism", Journal of Applied Physics, 107, 093701 (2010).
[4] M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U. I. Chung, I.-K. Yoo and K. Kim, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures", Nature Materials, 10, 625 (2011).
[5] Y. Wu, S. Yu, B. Lee and P. Wong, "Low-power TiN/Al2O3/Pt resistive switching device with sub-20 μA switching current and gradual resistance modulation", Journal of Applied Physics, 110, 094104 (2011).
[6] T. Kever, U. Bottger, C. Schindler and R. Waser, "On the origin of bistable resistive switching in metal organic charge transfer complex memory cells", Applied Physics Letters, 91, 083506 (2007).
[7] S. Y. Wang, C. W. Huang, D. Y. Lee, T. Y. Tseng and T. C. Chang, "Multilevel resistive switching in Ti/CuxO/Pt memory devices", Journal of Applied Physics, 108, 114110 (2010).
[8] R. Ebrahim, N. Wu and A. Ignatiev, "Multi-mode bipolar resistance switching in CuxO films", Journal of Applied Physics, 111, 034509 (2012).
[9] S. Yu, H.-Y. Chen, B. Gao, J. Kang and H. Wong, "HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture", Acs Nano, 7, 2320 (2013).
[10] R. Fang, Y. Gonzalez Velo, W. Chen, K. E. Holbert, M. N. Kozicki, H. Barnaby and S. Yu, "Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory", Applied Physics Letters, 104, 183507 (2014).
[11] D. Lee, J. Woo, S. Park, E. Cha, S. Lee and H. Hwang, "Dependence of reactive metal layer on resistive switching in a bi-layer structure Ta/HfOx filament type resistive random access memory", Applied Physics Letters, 104, 083507 (2014).
[12] H. Masamitsu, N. Takahiro and C. Toyohiro, "Impact of Cu Electrode on Switching Behavior in a Cu/HfO2/Pt Structure and Resultant Cu Ion Diffusion", Applied Physics Express, 2, 061401 (2009).
[13] D. Choi and C. Soo Kim, "Coexistence of unipolar and bipolar resistive switching in Pt/NiO/Pt", Applied Physics Letters, 104, 193507 (2014).
[14] F. S. S. Chien, Y. T. Wu, G. L. Lai and Y. H. Lai, "Disproportionation and comproportionation reactions of resistive switching in polycrystalline NiOx films", Applied Physics Letters, 98, 153513 (2011).
[15] S. Z. Rahaman, S. Maikap, T. C. Tien, H. Y. Lee, W. S. Chen, F. T. Chen, M. J. Kao and M. J. Tsai, "Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface", Nanoscale Research Letters, 7, 345 (2012).
[16] C. Chen, S. Gao, F. Zeng, G. Y. Wang, S. Z. Li, C. Song and F. Pan, "Conductance quantization in oxygen-anion-migration-based resistive switching memory devices", Applied Physics Letters, 103, 043510 (2013).
[17] L. J. Zhang, R. Huang, M. H. Zhu, S. Q. Qin, Y. B. Kuang, D. J. Gao, C. Y. Shi and Y. Y. Wang, "Unipolar TaOx-Based Resistive Change Memory Realized With Electrode Engineering", IEEE Electron Device Letters, 31, 966 (2010).
[18] J. Hyung Kim, A. Rahm Lee, Y. Cheol Bae, K. Ho Baek, H. Sik Im and J. Pyo Hong, "Observation of bias-dependent noise sources in a TiOx/TiOy bipolar resistive switching frame", Applied Physics Letters, 104, 083508 (2014).
[19] K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin and Y. Nishi, "Bipolar resistive switching in polycrystalline TiO2 films", Applied Physics Letters, 90, 113501 (2007).
[20] F. Zhuge, S. Peng, C. He, X. Zhu, X. Chen, Y. Liu and R. W. Li, "Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments", Nanotechnology, 22, 275204 (2011).
[21] S. Lee, H. Kim, J. Park and K. Yong, "Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films", Journal of Applied Physics, 108, 076101 (2010).
[22] Y. T. Li, S. B. Long, M. H. Zhang, Q. Liu, L. B. Shao, S. Zhang, Y. Wang, Q. Y. Zuo, S. Liu and M. Liu, "Resistive Switching Properties of Au/ZrO2/Ag Structure for Low-Voltage Nonvolatile Memory Applications", IEEE Electron Device Letters, 31, 117 (2010).
[23] S. Y. Wang, D. Y. Lee, T. Y. Tseng and C. Y. Lin, "Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films", Applied Physics Letters, 95, 112904 (2009).
[24] T.-Y. Chang, Y.-W. Cheng and P.-T. Lee, "Electrical characteristics of an organic bistable device using an Al/Alq3/nanostructured MoO3/Alq3/p+-Si structure", Applied Physics Letters, 96, 043309 (2010).
[25] Z. Jin, G. Liu and J. Wang, "Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle", AIP Advances, 3, 052113 (2013).
[26] D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. I. Park and W. K. Choi, "Flexible Organic Bistable Devices Based on Graphene Embedded in an Insulating Poly(methyl methacrylate) Polymer Layer", Nano Letters, 10, 2441 (2010).
[27] P. Y. Lai and J. S. Chen, "Ultrahigh on/off -Current Ratio for Resistive Memory Devices With Poly(N-Vinylcarbazole)/Poly(3, 4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) Stacking Bilayer", IEEE Electron Device Letters, 32, 387 (2011).
[28] K. Mijung and K. Ohyun, "Unipolar Resistance Switching in Polymeric Resistance Random Access Memories", Japanese Journal of Applied Physics, 48, 06FD02 (2009).
[29] Y.-C. Chen, Y.-L. Chung, B.-T. Chen, W.-C. Chen and J.-S. Chen, "Revelation on the Interrelated Mechanism of Polarity-Dependent and Multilevel Resistive Switching in TaOx-Based Memory Devices", Journal of Physical Chemistry C, 117, 5758 (2013).
[30] Y. Sharma, P. Misra, S. P. Pavunny and R. S. Katiyar, "Multilevel unipolar resistive memory switching in amorphous SmGdO3 thin film", Applied Physics Letters, 104, 073501 (2014).
[31] J. Wang, R. Chen, F. Wang, A. Yan, G. Hu, R. Li, X. Liu and Z. Chi, "Multilevel and long retentive resistive switching in low temperature nanostructured Cu/SiOx-W-SiOx/Pt", Applied Physics Letters, 103, 212903 (2013).
[32] T. Liu, M. Verma, Y. H. Kang and M. K. Orlowski, "I-V Characteristics of Antiparallel Resistive Switches Observed in a Single Cu/TaOx/Pt Cell", IEEE Electron Device Letters, 34, 108 (2013).
[33] Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application", Nano Letters, 9, 1636 (2009).
[34] S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao and M. J. Tsai, "Repeatable unipolar/bipolar resistive memory characteristics and switching mechanism using a Cu nanofilament in a GeOx film", Applied Physics Letters, 101, 073106 (2012).
[35] N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Hasegawa and M. Aono, "Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch", IEEE Transactions on Electron Devices, 55, 3283 (2008).
[36] S. Kim, S. Choi and W. Lu, "Comprehensive Physical Model of Dynamic Resistive Switching in an Oxide Memristor", Acs Nano, 8, 2369 (2014).
[37] Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun and M. Liu, "Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM", Advanced Materials, 24, 1844 (2012).
[38] S.-J. Choi, G.-S. Park, K.-H. Kim, S. Cho, W.-Y. Yang, X.-S. Li, J.-H. Moon, K.-J. Lee and K. Kim, "In Situ Observation of Voltage-Induced Multilevel Resistive Switching in Solid Electrolyte Memory", Advanced Materials, 23, 3272 (2011).
[39] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee and S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film", Applied Physics Letters, 91, 222103 (2007).
[40] J. Y. Son and Y. H. Shin, "Direct observation of conducting filaments on resistive switching of NiO thin films", Applied Physics Letters, 92, 222106 (2008).
[41] D. S. H. Charrier, M. Kemerink, B. E. Smalbrugge, T. de Vries and R. A. J. Janssen, "Real versus Measured Surface Potentials in Scanning Kelvin Probe Microscopy", Acs Nano, 2, 622 (2008).
[42] R. Waser, R. Dittmann, G. Staikov and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Advanced Materials, 21, 2632 (2009).
[43] C. Hu, M. D. McDaniel, A. Posadas, A. A. Demkov, J. G. Ekerdt and E. T. Yu, "Highly Controllable and Stable Quantized Conductance and Resistive Switching Mechanism in Single-Crystal TiO2 Resistive Memory on Silicon", Nano Letters, 14, 4360 (2014).
[44] F. Miao, W. Yi, I. Goldfarb, J. J. Yang, M.-X. Zhang, M. D. Pickett, J. P. Strachan, G. Medeiros-Ribeiro and R. S. Williams, "Continuous Electrical Tuning of the Chemical Composition of TaOx-Based Memristors", Acs Nano, 6, 2312 (2012).
[45] J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao, J.-G. Zheng and J. Liu, "Resistive Switching in Single Epitaxial ZnO Nanoislands", Acs Nano, 6, 1051 (2012).
[46] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim and C. S. Hwang, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory", Nature Nanotechnology, 5, 148 (2010).
[47] J. J. Yang, I. H. Inoue, T. Mikolajick and C. S. Hwang, "Metal oxide memories based on thermochemical and valence change mechanisms", Mrs Bulletin, 37, 131 (2012).
[48] Q. F. Xia, J. J. S. Yang, W. Wu, X. M. Li and R. S. Williams, "Self-Aligned Memristor Cross-Point Arrays Fabricated with One Nanoimprint Lithography Step", Nano Letters, 10, 2909 (2010).
[49] R. C. Weast, "Handbook of chemistry and physics", (1987).
[50] I. Barin, "Thermochemical Data of Pure Substances", (2008).
[51] I. Valov, R. Waser, J. R. Jameson and M. N. Kozicki, "Electrochemical metallization memories—fundamentals, applications, prospects", Nanotechnology, 22, 254003 (2011).
[52] A. Sawa, "Resistive switching in transition metal oxides", Materials Today, 11, 28 (2008).
[53] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe and Y. Tokura, "Hysteretic current--voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3", Applied Physics Letters, 86, 012107 (2005).
[54] N. Zhong, H. Shima and H. Akinaga, "Rectifying characteristic of Pt/TiOx/metal/Pt controlled by electronegativity", Applied Physics Letters, 96, 042107 (2010).
[55] J. H. Yoon, S. J. Song, I.-H. Yoo, J. Y. Seok, K. J. Yoon, D. E. Kwon, T. H. Park and C. S. Hwang, "Highly Uniform, Electroforming-Free, and Self-Rectifying Resistive Memory in the Pt/Ta2O5/HfO2-x/TiN Structure", Advanced Functional Materials, 24, 5086 (2014).
[56] J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nature Nanotechnology, 3, 429 (2008).
[57] L. He, Z.-M. Liao, H.-C. Wu, X.-X. Tian, D.-S. Xu, G. L. W. Cross, G. S. Duesberg, I. V. Shvets and D.-P. Yu, "Memory and Threshold Resistance Switching in Ni/NiO Core–Shell Nanowires", Nano Letters, 11, 4601 (2011).
[58] F. Pan, S. Yin and S. Vivek "A comprehensive simulation study on metal conducting filament formation in resistive switching memories" IEEE International Memory Workshop, 1 2011.
[59] S. Kim, S.-J. Kim, K. Kim, S. Lee, M. Chang, E. Cho, Y.-B. Kim, C. Kim and U. In Chung, "Physical electro-thermal model of resistive switching in bi-layered resistance-change memory", Scientific Reports, 3, 1680 (2013).
[60] L. Goux, J. G. Lisoni, M. Jurczak, D. J. Wouters, L. Courtade and C. Muller, "Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers", Journal of Applied Physics, 107, 024512 (2010).
[61] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi and B. H. Park, "Reproducible resistance switching in polycrystalline NiO films", Applied Physics Letters, 85, 5655 (2004).
[62] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D. S. Suh, Y. S. Joung, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim and B. H. Park, "Conductivity switching characteristics and reset currents in NiO films", Applied Physics Letters, 86, 093509 (2005).
[63] S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B. H. Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J. S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon and S. H. Hong, "Electrode dependence of resistance switching in polycrystalline NiO films", Applied Physics Letters, 87, 263507 (2005).
[64] W. Y. Park, G. H. Kim, J. Y. Seok, K. M. Kim, S. J. Song, M. H. Lee and C. S. Hwang, "A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays", Nanotechnology, 21, 195201 (2010).
[65] K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, M. H. Lee, J. H. Yoon and C. S. Hwang, "Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures", Nanotechnology, 21, 305203 (2010).
[66] S. Lee, H. Kim, D. J. Yun, S. W. Rhee and K. Yong, "Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices", Applied Physics Letters, 95, 262113 (2009).
[67] C. Y. Lin, C. Y. Wu, T. Y. Tseng and C. M. Hu, "Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode", Journal of Applied Physics, 102, 094101 (2007).
[68] H. Y. Jeong, J. Y. Lee and S. Y. Choi, "Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films", Applied Physics Letters, 97, 042109 (2010).
[69] K. Kinoshtia, T. Okutani, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi and S. Kishida, "Opposite bias polarity dependence of resistive switching in n-type Ga-doped-ZnO and p-type NiO thin films", Applied Physics Letters, 96, 143505 (2010).
[70] Z. Xu, Y. Bando, W. L. Wang, X. D. Bai and D. Golberg, "Real-Time In Situ HRTEM-Resolved Resistance Switching of Ag2S Nanoscale Ionic Conductor", Acs Nano, 4, 2515 (2010).
[71] C. P. Hsiung, H. W. Liao, J. Y. Gan, T. B. Wu, J. C. Hwang, F. Chen and M. J. Tsai, "Formation and Instability of Silver Nanofilament in Ag-Based Programmable Metallization Cells", Acs Nano, 4, 5414 (2010).
[72] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, "Hysteretic current--voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface", Applied Physics Letters, 85, 4073 (2004).
[73] S. Asanuma, H. Akoh, H. Yamada and A. Sawa, "Relationship between resistive switching characteristics and band diagrams of Ti/Pr1-xCaxMnO3 junctions", Physical Review B, 80, 235113 (2009).
[74] M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Kim and B. H. Park, "Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory", Advanced Materials, 19, 3919 (2007).
[75] B. Cho, T. W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G. Y. Jung and T. Lee, "Rewritable Switching of One Diode-One Resistor Nonvolatile Organic Memory Devices", Advanced Materials, 22, 1228 (2010).
[76] M. J. Lee, S. I. Kim, C. B. Lee, H. X. Yin, S. E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim and Y. Park, "Low-Temperature-Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High-Density Non-volatile Memory", Advanced Functional Materials, 19, 1587 (2009).
[77] H. Shima, F. Takano, H. Muramatsu, H. Akinaga, I. H. Inoue and H. Takagi, "Control of resistance switching voltages in rectifying Pt/TiOx/Pt trilayer", Applied Physics Letters, 92, 043510 (2008).
[78] J. J. Huang, C. W. Kuo, W. C. Chang and T. H. Hou, "Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide diode", Applied Physics Letters, 96, 262901 (2010).
[79] D. M. Smyth, "The Defect Chemistry of Metal Oxides", (2000).
[80] J. R. Jameson, Y. Fukuzumi, Z. Wang, P. Griffin, K. Tsunoda, G. I. Meijer and Y. Nishi, "Field-programmable rectification in rutile TiO2 crystals", Applied Physics Letters, 91, 112101 (2007).
[81] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy", (1995).
[82] H. Ohsaki, Y. Tachibana, A. Mitsui, T. Kamiyama and Y. Hayashi, "High rate deposition of TiO2 by DC sputtering of the TiO2-X target", Thin Solid Films, 392, 169 (2001).
[83] G. M. Liu, W. Jaegermann, J. J. He, V. Sundstrom and L. C. Sun, "XPS and UPS characterization of the TiO2/ZnPcGly heterointerface: Aligmment of energy levels", Journal of Physical Chemistry B, 106, 5814 (2002).
[84] H. T. Lue, C. Y. Liu and T. Y. Tseng, "An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric", IEEE Electron Device Letters, 23, 553 (2002).
[85] A. Campera, G. Iannaccone and F. Crupi, "Modeling of tunnelling currents in Hf-based gate stacks as a function of temperature and extraction of material parameters", IEEE Transactions on Electron Devices, 54, 83 (2007).
[86] F. Crupi, C. Ciofi, A. Germano, G. Iannaccone, J. H. Stathis and S. Lombardo, "On the role of interface states in low-voltage leakage currents of metal-oxide-semiconductor structures", Applied Physics Letters, 80, 4597 (2002).
[87] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg and S. Tiedke, "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition", Journal of Applied Physics, 98, 033715 (2005).
[88] F. M. Hossain, G. E. Murch, L. Sheppard and J. Nowotny, "The effect of defect disorder on the electronic structure of rutile TiO2-x", Defect and Diffusion Forum, 251, 1 (2006).
[89] D. F. Gu, S. K. Dey and P. Majhi, "Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2", Applied Physics Letters, 89, 082907 (2006).
[90] K. D. Schierbaum, S. Fischer, M. C. Torquemada, J. L. deSegovia, E. Roman and J. A. MartinGago, "The interaction of Pt with TiO2(110) surfaces: A comparative XPS, UPS, ISS, and ESD study", Surface Science, 345, 261 (1996).
[91] A. Beiser, Concepts of modern physics, 6th ed., McGraw-Hill companies, New York, 2003.
[92] K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi and C. S. Hwang, "Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films", Applied Physics Letters, 91, 012907 (2007).
[93] K. M. Kim and C. S. Hwang, "The conical shape filament growth model in unipolar resistance switching of TiO2 thin film", Applied Physics Letters, 94, 122109 (2009).
[94] G. I. Meijer, "Materials science - Who wins the nonvolatile memory race?", Science, 319, 1625 (2008).
[95] M. N. Kozicki, C. Gopalan, M. Balakrishnan, P. Mira and M. Mitkova In Non-Volatile Memory Technology Symposium 2004, p 10.
[96] C. Schindler, S. C. P. Thermadam, R. Waser and M. N. Kozicki, "Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2", IEEE Transactions on Electron Devices, 54, 2762 (2007).
[97] I. Valov and R. Waser, "Comment on Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte- Based ReRAM", Advanced Materials, 25, 162 (2013).
[98] S. Tappertzhofen, S. Menzel, I. Valov and R. Waser, "Redox processes in silicon dioxide thin films using copper microelectrodes", Applied Physics Letters, 99, 203103 (2011).
[99] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan and W. Lu, "Observation of conducting filament growth in nanoscale resistive memories", Nature Communcations, 3, 732 (2012).
[100] K. Fujiwara, T. Nemoto, M. J. Rozenberg, Y. Nakamura and H. Takagi, "Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices", Japanese Journal of Applied Physics, 47, 6266 (2008).
[101] A. Ramadoss, K. Krishnamoorthy and S. J. Kim, "Resistive Switching Behaviors of HfO2 Thin Films by Sol-Gel Spin Coating for Nonvolatile Memory Applications", Applied Physics. Express, 5, 5803 (2012).
[102] T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, "Forming and switching mechanisms of a cation-migration-based oxide resistive memory", Nanotechnology, 21, 425205 (2010).
[103] T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, "Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch", Nanotechnology, 22, 254013 (2011).
[104] M. Kudo, M. Arita, Y. Ohno and Y. Takahashi, "Filament formation and erasure in molybdenum oxide during resistive switching cycles", Applied Physics Letters, 105, 173504 (2014).
[105] W. Lu, D. S. Jeong, M. Kozicki and R. Waser, "Electrochemical metallization cells-blending nanoionics into nanoelectronics?", Mrs Bulletin, 37, 124 (2012).
[106] W. L. Warren, K. Vanheusden, D. Dimos, G. E. Pike and B. A. Tuttle, "Oxygen Vacancy Motion in Perovskite Oxides", Journal of the American Ceramic Society, 79, 536 (1996).
[107] J. D. McBrayer, R. M. Swanson, T. W. Sigmon and J. Bravman, "Observation of rapid field aided diffusion of silver in metal‐oxide‐semiconductor structures", Applied Physics Letters, 43, 653 (1983).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-01-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw