進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2201201413552500
論文名稱(中文) 不同基因型產氣單胞菌之乙內醯胺酶分布及感染症之臨床表徵
論文名稱(英文) Clinical characterization and the β‐lactamase profiles of medically important Aeromonas genospecies in Taiwan
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 102
學期 1
出版年 103
研究生(中文) 吳綺容
研究生(英文) Chi-Jung Wu
學號 S98961042
學位類別 博士
語文別 英文
論文頁數 93頁
口試委員 指導教授-張敏政
指導教授-柯文謙
共同指導教授-薛博仁
共同指導教授-蔡佩珍
口試委員-楊采菱
口試委員-林秋烽
中文關鍵字 海洋產氣單胞菌  產氣單胞菌菌血症  AQU-1  乙內醯胺酶  金屬乙內醯胺酶  廣效性乙內醯胺酶  台灣 
英文關鍵字 Aeromonas aquariorum  Aeromonas dhakensis  Aeromonas bacteremia  AQU-1  AmpC β-lactamases  CphA metallo-β-lactamases  extended-spectrum β-lactamase  Taiwan 
學科別分類
中文摘要 產氣單胞菌(aeromonads)是生長於淡水及土壤中、分布全世界的革蘭氏陰性桿菌。Aeromonas dhakensis (之前被稱為 A. aquariorum) 是最近發現的新菌種,可感染人類並造成多種疾病。然而迄今,A. dhakensis 菌血症的盛行率、臨床表現及所帶有的乙內醯胺酶 (β-lactamase) 種類並不清楚。台灣產氣單胞菌菌血症菌種分子流行病學及不同菌種攜帶的乙內醯胺酶概況亦尚未被研究。本計劃的研究目標為釐清上述問題,以提供適當抗生素治療的參考。
首先,研究顯示於2004-2011年間成大醫院153例產氣單胞菌菌血症病人中, A. dhakensis、A. veronii 及 A. caviae 為主要之菌血症菌種。和 A. hydrophila 及 A. veronii 菌血症病人相似的是,大約一半罹患 A. dhakensis 菌血症的病人為肝硬化患者。經口食入 A. dhakensis 為可能的感染途徑之一。臨床觀察顯示,A. dhakensis 是造成臨床感染產氣單胞菌菌種中毒性最強者。多變數分析顯示感染 A. dhakensis菌種是產氣單胞菌菌血症病人14天敗血症死亡的獨立危險因子之一。病例分析發現一嚴重燒傷 A.dhakensis 傷口感染併敗血症(菌株具 ceftazidime感受性)病人,於接受 ceftazidime治療三天後,發生治療中再發的 A.dhakensis 菌血症(再發菌株具 ceftazidime抗藥性)。另一膽道感染病人於接受 carbapenem治療過程中,出現具 carbapenem抗藥性菌株之 A.dhakensis 菌血症。
再者,藉由 A. dhakensis (A. aquariorum) AAK1 菌株之全基因解序,我們發現 A. dhakensis 帶有三種位於染色體上的乙內醯胺酶基因,亦即 Ambler class B乙內醯胺酶(CphA金屬乙內醯胺酶,可水解 carbapenem)、class C乙內醯胺酶(AmpC乙內醯胺酶,可水解第一、二、三代 cephalosporin)及 class D乙內醯胺酶(可水解 penicillin)。我們進一步分析其中的 AmpC乙內醯胺酶基因特性及抗藥性表現,並將此新抗藥基因命名為aqu-1基因。轉錄體比較分析(comparative transcriptome analysis)結果顯示此三種乙內醯胺酶基因的表現同時受二元調節系統(two-component regulatory system)所調控。此外,實驗顯示 CphA金屬乙內醯胺酶基因存在於所有的 A. dhakensis、A. hydrophila 及 A. veronii 菌株;AmpC乙內醯胺酶基因則存在所有的 A. dhakensis 及 A. caviae 菌株。我們也發現產氣單胞菌可因得到外來的廣效性乙內醯胺酶(extended-spectrum β-lactamase)基因而表現多重抗藥性。於2004-2008間年156株菌血症菌株中,4株(2.6%)表現廣效性乙內醯胺酶之抗藥性。
有鑑於上述抗藥性基因相關之抗藥性不易被醫院例行的抗生素敏感性試驗偵測出,能了解存在於不同菌種產氣單胞菌的乙內醯胺酶概括相形重要。我們的研究有助於治療產氣單胞菌感染症時適當抗生素之選擇。
英文摘要 Aeromonas species, an aquatic gram-negative bacillus, distributes globally and ubiquitously in the nature environment. The recently reported novel species, Aeromonas dhakensis (formerly named A. aquariorum), has been found to be implicated in a variety of human diseases. However, little is known about the prevalence and clinical features of A. dhakensis bacteremia, and the knowledge of β-lactamase genes harbored in it is limited. The aims of this study were to investigate molecular epidemiology and clinical characterization of Aeromonas bacteremia and the distributions of β-lactamase genes in different Aeromonas genospecies in Taiwan, with emphasis on a novel species, A. dhakensis.
First, our molecular epidemiological surveillance of 153 patients with monomicrobial Aeromonas bacteremia during 2004 to 2011 at a medical center in southern Taiwan revealed that A. dhakensis, along with A. veronii and A. caviae, were the three major species causing Aeromonas bacteremia. As the cases of A. hydrophila and A. veronii bacteremia, about half of the patients with A. dhakensis bacteremia had liver cirrhosis. Oral ingestion is one of the possible routes to acquire A. dhakensis infections. Clinically, A. dhakensis was found to be the most virulent species, as demonstrated as an independent risk factor for 14-day sepsis-related mortality. A cefotaxime-resistant A. dhakensis isolate and an imipenem-resistant A. dhakensis isolate emerged from patients receiving ceftazidime and ertapenem therapy, respectively.
With the knowledge of whole genome sequencing of an A. dhakensis strain (A. aquariorum) AAK1, A. dhakensis is found to intrinsically carry three chromosomal genes encoding Ambler class B β-lactamase (CphA metallo-β-lactamase, carbapenemase), class C β-lactamase (AmpC β-lactamase, cephalosporinase), and class D β-lactamase (penicillinase). We further characterized and reported the novel AmpC gene in A. dhakensis, blaAQU-1. Transcriptome analyses revealed that these three β-lactamases are co-regulated by a two component regulatory system. The distribution of chromosomal class B, C, D β-lactamase genes among aeromonads was species-specific. CphA MBL genes were present in all A. dhakensis, A. hydrophila, and A. veronii isolates, while AmpC β-lactamase genes were found in all A. dhakensis (blaAQU-1) and A. caviae (blaMOX-like genes) isolates. The acquired resistance, for example, acquisition of a gene encoding extended-spectrum β-lactamase (ESBL), was also found among aeromonads. Of 156 blood isolates between 2004 and 2008, 4 (2.6%) isolates expressed the ESBL phenotypes.
Because these β-lactamases cannot be readily detected by the routine antimicrobial susceptibility testing used in the clinical microbiological laboratories, an understanding of the β-lactamase types in major Aeromonas genospecies is important. Our study results may add to the understanding towards appropriate antimicrobial therapy for Aeromonas infections.
論文目次 Abstract I
Acknowledgement IV
Abbreviations V
Chapter 1 1
Introduction 1
1.1 Taxonomy of Aeromonas species 1
1.2 Antimicrobial susceptibility among aeromonads 2
1.3 Thesis aims 5
1.3.1 Hypothesis 5
1.3.2 Specific aims 6
Chapter 2 7
Incidence of Aeromonas bacteremia in southern Taiwan 7
2.1 Background 7
2.2 Material and methods 7
2.3 Results 8
2.4 Discussion 9
2.5 Conclusion 10
2.6 Table 12
2.7 Figure 13
Chapter 3 14
Clinical characterization of Aeromonas bacteremia at a medical center in southern Taiwan 14
3.1 Background and aims 14
3.2 Material and methods 14
3.2.1 Patients 14
3.2.2 Aeromonas blood isolates and species identification 14
3.2.3 Antimicrobial susceptibility test 15
3.2.4 Distribution of AmpC and MBL genes 16
3.2.5 Clinical data 16
3.2.6 Statistical analyses 16
3.3 Results 16
3.4 A case report: A. dhakensis septicemia and enterocolitis in a cirrhotic patient 18
3.5 Discussion 20
3.6 Conclusions 21
3.7 Tables 22
3.8 Figure 26
Chapter 4 27
Extended-spectrum β-lactamase production among aeromonads 27
4.1 Background and aims 27
4.2 Material and methods 28
4.2.1 Bacterial isolates 28
4.2.2 Antimicrobial susceptibility tests 28
4.2.3 Detection of ESBL genes by PCR 29
4.2.4 Localization of blaPER-3 29
4.2.5 Clinical data and literature review 29
4.3 Results 30
4.3.1 Isolates with ESBL phenotype 30
4.3.2 Detection of ESBL genes 31
4.3.3 Localization of blaPER-3 31
4.3.4 Patients and literature review 31
4.4 Discussion 32
4.5 Conclusions 35
4.6 Tables 36
4.7 Figure 39
Chapter 5 40
Metallo-β-lactamase production among aeromonads 40
5.1 Background and aims 40
5.2 Material and methods 41
5.2.1 Bacterial isolates 41
5.2.2 Detection of cphA-related genes 41
5.2.3 Imipenem susceptibility and expression of MBL 42
5.2.4 Clinical data 43
5.3 Results 43
5.3.1 Species and cphA-related genes distribution 43
5.3.2 cphA and imipenem susceptibility 45
5.3.3 Modified Hodge test and imipenem susceptibility 45
5.3.4 Clinical data 46
5.4 Discussion 46
5.5 Conclusions 49
5.6 Tables 50
5.7 Figure 53
Chapter 6 54
Whole genome sequences of A. dhakensis 54
6.1 Background and aims 54
6.2 Material and methods 54
6.3 Results and discussion 55
6.4 Conclusions: 56
6.5 Table 57
Chapter 7 58
AQU-1, a chromosomal class C β-lactamase, among A. dhakensis isolates 58
7.1 Background and aims 58
7.2 Material and methods 58
7.2.1 Bacterial isolates. 58
7.2.2 Identification of blaAQU-1. 59
7.2.3 Cloning, distribution, and phylogenetic analysis of blaAQU-1. 60
7.2.4 Antimicrobial susceptibility. 61
7.2.5 In vitro selection of cefotaxime-resistant mutants. 61
7.2.6 mRNA expression of blaAQU-1. 62
7.3 Results 62
7.3.1 Characterization, distribution, and phylogenetic analysis of blaAQU-1 62
7.3.2 Antimicrobial susceptibility 64
7.3.3 Development of cefotaxime-resistant mutants. 64
7.3.4 Clinical data 64
7.4 Discussion 65
7.5 Conclusions 67
7.6 Tables 68
7.7 Figures 71
Chapter 8 74
General discussion, conclusions, and prospects 74
8.1 General discussion 74
8.2 Conclusions 78
8.3 Prospects 78
8.4 Table 80
Bibliography 81
Publication list 91
Thesis-related publications 91
Publications during PHD study 92
參考文獻 1. Wu CJ, Wu JJ, Yan JJ, Lee HC, Lee NY, Chang CM, Shih HI, Wu HM, Wang LR, Ko WC. 2007. Clinical significance and distribution of putative virulence markers of 116 consecutive clinical Aeromonas isolates in southern Taiwan. J Infect 54:151-158.
2. Janda JM, Abbott SL. 2010. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35-73.
3. Hiransuthikul N, Tantisiriwat W, Lertutsahakul K, Vibhagool A, Boonma P. 2005. Skin and soft-tissue infections among tsunami survivors in southern Thailand. Clin Infect Dis 41:E93-E96.
4. Ko WC, Lee HC, Chuang YC, Liu CC, Wu JJ. 2000. Clinical features and therapeutic implications of 104 episodes of monomicrobial Aeromonas bacteraemia. J Infect 40:267-273.
5. Ko WC, Chuang YC. 1995. Aeromonas bacteremia: review of 59 episodes. Clin Infect Dis 20:1298-1304.
6. Kuo CH, Changchien CS, Yang CY, Sheen IS, Liaw YF. 1991. Bacteremia in patients with cirrhosis of the liver. Liver 11:334-339.
7. Janda JM. 1991. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin Microbiol Rev 4:397-410.
8. Aravena-Roman M, Harnett GB, Riley TV, Inglis TJJ, Chang BJ. 2011. Aeromonas aquariorum is widely distributed in clinical and environmental specimens and can be misidentified as Aeromonas hydrophila. J Clin Microbiol 49:3006-3008
9. Figueras MJ, Alperi A, Saavedra MJ, Ko WC, Gonzalo N, Navarro M, Martinez-Murcia AJ. 2009. Clinical relevance of the recently described species Aeromonas aquariorum. J Clin Microbiol 47:3742-3746.
10. Martinez-Murcia AJ, Saavedra MJ, Mota VR, Maier T, Stackebrandt E, Cousin S. 2008. Aeromonas aquariorum sp. nov., isolated from aquaria of ornamental fish. Int J Syst Evol Microbiol 58:1169-1175.
11. Beaz-Hidalgo R, Martinez-Murcia A, Figueras MJ. 2013. Reclassification of Aeromonas hydrophila subsp. dhakensis Huys et al. 2002 and Aeromonas aquariorum Martinez-Murcia et al. 2008 as Aeromonas dhakensis sp. nov. comb nov. and emendation of the species Aeromonas hydrophila. Syst Appl Microbiol 36:171-176.
12. Puthucheary SD, Puah SM, Chua KH. 2012. Molecular characterization of clinical isolates of Aeromonas species from Malaysia. PloS one 7:e30205.
13. Lamy B, Laurent F, Kodjo A. 2010. Validation of a partial rpoB gene sequence as a tool for phylogenetic identification of aeromonads isolated from environmental sources. Can J Microbiol 56:217-228.
14. Kupfer M, Kuhnert P, Korczak BM, Peduzzi R, Demarta A. 2006. Genetic relationships of Aeromonas strains inferred from 16S rRNA, gyrB and rpoB gene sequences. Int J Syst Evol Microbiol 56:2743-2751.
15. Soler L, Yanez MA, Chacon MR, Aguilera-Arreola MG, Catalan V, Figueras MJ, Martinez-Murcia AJ. 2004. Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54:1511-1519.
16. Tamar FB, Dennis LK. 2010. Infections due to the HACEK group and miscellaneous gram-negative bacteria, p479. In: Dennis LK, Anthony SF (ed.), Harrison's infectious diseases. McGraw-Hill Companies, New York, NY, United States. .
17. Fosse T, Giraud-Morin C, Madinier I. 2003. Phenotypes of beta-lactam resistance in the genus Aeromonas. Pathol Biol (Paris) 51:290-296.
18. Segatore B, Massidda O, Satta G, Setacci D, Amicosante G. 1993. High specificity of cphA-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance. Antimicrob Agents Chemother 37:1324-1328.
19. Bush K, Jacoby GA, Medeiros AA. 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211-1233.
20. Jones RN. 1998. Important and emerging beta-lactamase-mediated resistances in hospital-based pathogens: the Amp C enzymes. Diagn Microbiol Infect Dis 31:461-466.
21. Ye Y, Xu XH, Li JB. 2010. Emergence of CTX-M-3, TEM-1 and a new plasmid-mediated MOX-4 AmpC in a multiresistant Aeromonas caviae isolate from a patient with pneumonia. J Med Microbiol 59:843-847.
22. Lu SY, Zhang YL, Geng SN, Li TY, Ye ZM, Zhang DS, Zou F, Zhou HW. 2010. High diversity of extended-spectrum beta-lactamase-producing bacteria in an urban river sediment habitat. Appl Environ Microb 76:5972-5976.
23. Girlich D, Poirel L, Nordmann P. 2011. Diversity of clavulanic acid-inhibited extended-spectrum beta-lactamases in Aeromonas spp. from the Seine River, Paris, France. Antimicrob Agents Chemother 55:1256-1261.
24. Picao RC, Poirel L, Demarta A, Petrini O, Corvaglia AR, Nordmann P. 2008. Expanded-spectrum beta-lactamase PER-1 in an environmental Aeromonas media isolate from Switzerland. Antimicrob Agents Chemother 52:3461-3462.
25. Rodriguez CN, Campos R, Pastran B, Jimenez I, Garcia A, Meijomil P, Rodriguez-Morales AJ. 2005. Sepsis due to extended-spectrum β-lactamase-producing Aeromonas hydrophila in a pediatric patient with diarrhea and pneumonia. Clin Infect Dis 41:421-422.
26. Fosse T, Giraud-Morin C, Madinier I, Mantoux F, Lacour JP, Ortonne JP. 2004. Aeromonas hydrophila with plasmid-borne class A extended-spectrum β-lactamase TEM-24 and three chromosomal class B, C, and D β-lactamases, isolated from a patient with necrotizing fasciitis. Antimicrob Agents Chemother 48:2342-2343.
27. Marchandin H, Godreuil S, Darbas H, Jean-Pierre H, Jumas-Bilak E, Chanal C, Bonnet R. 2003. Extended-spectrum beta-lactamase TEM-24 in an Aeromonas clinical strain: acquisition from the prevalent Enterobacter aerogenes clone in France. Antimicrob Agents Chemother 47:3994-3995.
28. Clinical and Laboratory Standards Institute. 2009. Performance standards for antimicrobial susceptibility testing; 19th informational supplement. M100-S19. CLSI. Wayene, PA.
29. Clinical and Laboratory Standards Institute. 2010. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline-second edition. M45-A2. CLSI. Wayne, PA.
30. Lamy B, Kodjo A, Laurent F. 2009. Prospective nationwide study of Aeromonas infections in France. J Clin Microbiol 47:1234-1237.
31. Janda JM, Guthertz LS, Kokka RP, Shimada T. 1994. Aeromonas species in septicemia - Laboratory characteristics and clinical observations. Clin Infect Dis 19:77-83.
32. De Luca F, Giraud-Morin C, Rossolini GM, Docquier JD, Fosse T. 2010. Genetic and biochemical characterization of TRU-1, the endogenous class C β-lactamase from Aeromonas enteropelogenes. Antimicrob Agents Chemother 54:1547-1554.
33. Avison MB, Niumsup P, Nurmahomed K, Walsh TR, Bennett PM. 2004. Role of the 'cre/blr-tag' DNA sequence in regulation of gene expression by the Aeromonas hydrophila beta-lactamase regulator, BlrA. J Antimicrob Chemother 53:197-202.
34. ASM Press. 2010. Manual of clinical microbiology, 10th ed. ASM Press, Washington, DC.
35. Tainan city government website (http://www.tncg.gov.tw/tainan/Intro.asp?nsub=L1A300). Accessed February 17, 2012.
36. King GE, Werner SB, Kizer KW. 1992. Epidemiology of Aeromonas infections in California. Clin Infect Dis 15:449-452.
37. Hlady WG, Klontz KC. 1996. The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis 173:1176-1183.
38. Chen PL, Li CY, Hsieh TH, Chang CM, Lee HC, Lee NY, Wu CJ, Lee CC, Shih HI, Ko WC. 2012. Epidemiology, disease spectrum and economic burden of non-typhoidal Salmonella infections in Taiwan, 2006-2008. Epidemiol Infect 140:2256-2263.
39. Fisker N, Vinding K, Molbak K, Hornstrup MK. 2003. Clinical review of nontyphoid Salmonella infections from 1991 to 1999 in a Danish county. Clin Infect Dis 37:e47-52.
40. Gil Prieto R, Alejandre CG, Meca AA, Barrera VH, de Miguel AG. 2009. Epidemiology of hospital-treated Salmonella infection; data from a national cohort over a ten-year period. J Infect 58:175-181.
41. Vaillant V, de Valk H, Baron E, Ancelle T, Colin P, Delmas MC, Dufour B, Pouillot R, Le Strat Y, Weinbreck P, Jougla E, Desenclos JC. 2005. Foodborne infections in France. Foodborne Pathog Dis 2:221-232.
42. Laupland KB, Schonheyder HC, Kennedy KJ, Lyytikainen O, Valiquette L, Galbraith J, Collignon P. 2010. Salmonella enterica bacteraemia: a multi-national population-based cohort study. BMC Infect Dis 10:95.
43. Gradel KO, Schonheyder HC, Pedersen L, Thomsen RW, Norgaard M, Nielsen H. 2006. Incidence and prognosis of non-typhoid Salmonella bacteraemia in Denmark: a 10-year county-based follow-up study. Eur J Clin Microbiol Infect Dis 25:151-158.
44. Department of Health, Executive Yuan, Taiwan, ROC. Public health report. Available from: http://www.doh.gov.tw/ufile/doc/Taiwan_Public_Health_Report2008.pdf; Accessed February 17, 2012.
45. Yaun SS, Lin LP. 1993. Isolation and characterization of Aeromonas from seafoods in Taipei. Chin J Microbiol Immunol 26:78-85.
46. Egorov AI, Best JM, Frebis CP, Karapondo MS. 2011. Occurrence of Aeromonas spp. in a random sample of drinking water distribution systems in the USA. J Water Health 9:785-798.
47. Matthew K. Waldor GTK. 2010. Cholera and other vibrioses, p.540-546. In: Dennis LK, Anthony SF (ed.), Harrison's infectious diseases. McGraw-Hill Companies, New York, NY, United States.
48. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S. 2000. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385-2394.
49. Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK. 2005. The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infect Immun 73:6446-6457.
50. Sturenburg E, Sobottka I, Noor D, Laufs R, Mack D. 2004. Evaluation of a new cefepime-clavulanate ESBL Etest to detect extended-spectrum beta-lactamases in an Enterobacteriaceae strain collection. J Antimicrob Chemother 54:134-138.
51. Rice LB and Bonomo RA. 1996. Genetic and biochemical mechanisms of bacterial resistance to antimicrobial agents, p. 453–501. In V. Lorian (ed.), Antibiotics in laboratory medicine, 4th ed. Williams & Wilkins, Baltimore, MD.
52. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65:490-495.
53. Saladin M, Cao VTB, Lambert T, Donay JL, Herrmann JL, Ould-Hocine Z, Verdet C, Delisle F, Philippon A, Arlet G. 2002. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 209:161-168.
54. Yan JJ, Wu SM, Tsai SH, Wu JJ, Su IJ. 2000. Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum beta-lactamases and identification of a novel AmpC enzyme (CMY-8) in southern Taiwan. Antimicrob Agents Chemother 44:1438-1442.
55. Nuesch-Inderbinen MT, Hachler H, Kayser FH. 1996. Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis 15:398-402.
56. Nordmann P, Naas T. 1994. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother 38:104-114.
57. Massidda O, Rossolini GM, Satta G. 1991. The Aeromonas hydrophila CphA gene - molecular heterogeneity among class-B metallo-beta-lactamases. J Bacteriol 173:4611-4617.
58. Patzer JA, Walsh TR, Weeks J, Dzierzanowska D, Toleman MA. 2009. Emergence and persistence of integron structures harbouring VIM genes in the Children's Memorial Health Institute, Warsaw, Poland, 1998-2006. J Antimicrob Chemother 63:269-273.
59. Chow JW, Yu VL. 1999. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: a commentary. Int J Antimicrob Agents 11:7-12.
60. Balsalobre LC, Dropa M, de Oliveira DE, Lincopan N, Mamizuka EM, Matte GR, Matte MH. 2010. Presence of blaTEM-116 gene in environmental isolates of Aeromonas hydrophila and Aeromonas jandaei from Brazil. Braz J Microbiol 41:718-719.
61. Lin TL, Tang SI, Fang CT, Hsueh PR, Chang SC, Wang JT. 2006. Extended-spectrum beta-lactamase genes of Klebsiella pneumoniae strains in Taiwan: Recharacterization of SHV-27, SHV-41, and TEM-116. Microb Drug Resist 12:12-15.
62. Toleman MA, Bennett PM, Walsh TR. 2006. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70:296-316.
63. Girlich D, Poirel L, Nordmann P. 2010. PER-6, an extended-spectrum beta-lactamase from Aeromonas allosaccharophila. Antimicrob Agents Chemother 54:1619-1622.
64. Perilli M, De Santis F, Mugnaioli C, Rossolini GM, Luzzaro F, Stefani S, Mezzatesta ML, Toniolo A, Amicosante G. 2007. Spread of Enterobacteriaceae carrying the PER-1 extended-spectrum beta-lactamase gene as a chromosomal insert: a report from Italy. J Antimicrob Chemother 59:323-324.
65. Wang H, Guo P, Sun H, Yang Q, Chen M, Xu Y, Zhu Y. 2007. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother 51:4022-4028.
66. Empel J, Filczak K, Mrowka A, Hryniewicz W, Livermore DM, Gniadkowski M. 2007. Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum beta-lactamase in Warsaw, Poland: further evidence for an international clonal complex. J Clin Microbiol 45:2829-2834.
67. Jacobs L, Chenia HY. 2007. Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int J Food Microbiol 114:295-306.
68. Paterson DL, Bonomo RA. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18:657-686.
69. Lee CC, Lee NY, Yan JJ, Lee HC, Chen PL, Chang CM, Wu CJ, Ko NY, Wang LR, Chi CH, Ko WC. 2010. Bacteremia due to extended-spectrum-beta-lactamase-producing Enterobacter cloacae: role of carbapenem therapy. Antimicrob Agents Chemother 54:3551-3556.
70. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL. 2004. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med 140:26-32.
71. Rossolini GM, Zanchi A, Chiesurin A, Amicosante G, Satta G, Guglielmetti P. 1995. Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas. Antimicrob Agents Chemother 39:346-349.
72. Walsh TR, Neville WA, Haran MH, Tolson D, Payne DJ, Bateson JH, MacGowan AP, Bennett PM. 1998. Nucleotide and amino acid sequences of the metallo-beta-lactamase, ImiS, from Aeromonas veronii bv. sobria. Antimicrob Agents Chemother 42:436-439.
73. Neuwirth C, Siebor E, Robin F, Bonnet R. 2007. First occurrence of an IMP metallo-beta-lactamase in Aeromonas caviae: IMP-19 in an isolate from France. Antimicrob Agents Chemother 51:4486-4488.
74. Libisch B, Giske CG, Kovacs B, Toth TG, Fuzi M. 2008. Identification of the first VIM metallo-beta-lactamase-producing multiresistant Aeromonas hydrophila strain. J Clin Microbiol 46:1878-1880.
75. Balsalobre LC, Dropa M, Lincopan N, Mamizuka EM, Matte GR, Matte MH. 2009. Detection of metallo-beta-lactamases-encoding genes in environmental isolates of Aeromonas hydrophila and Aeromonas jandaei. Lett Appl Microbiol 49:142-145.
76. Talavera BMM, Benassi FO, von Specht MH, Quiroga MI, Garcı´a MA, Pucciarelli AB, Zubreski E, Laczeski ME and Gutkind G. 2006. Susceptibilities to carbapenems and presence of cphA gene on food-borne Aeromonas. Braz Arch Biol Techn 49:677-682.
77. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. 2002. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 40:3798-3801.
78. Rossolini GM, Walsh T, Amicosante G. 1996. The Aeromonas metallo-beta-lactamases: genetics, enzymology, and contribution to drug resistance. Microb Drug Resist 2:245-252.
79. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. 2001. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 7:88-91.
80. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, Goto M. 2000. Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol 38:40-43.
81. Mukhopadhyay C, Bhargava A, Ayyagari A. 2003. Aeromonas hydrophila and aspiration pneumonia: a diverse presentation. Yonsei Med J 44:1087-1090.
82. Itoh H, Kuwata G, Tateyama S, Yamashita K, Inoue T, Kataoka H, Ido A, Ogata K, Takasaki M, Inoue S, Tsubouchi H, Koono M. 1999. Aeromonas sobria infection with severe soft tissue damage and segmental necrotizing gastroenteritis in a patient with alcoholic liver cirrhosis. Pathol Int 49:541-546.
83. Moues CM, Vos MC, van den Bemd GJ, Stijnen T, Hovius SE. 2004. Bacterial load in relation to vacuum-assisted closure wound therapy: a prospective randomized trial. Wound Repair Regen 12:11-17.
84. Brian JD, Julian K. 2011. Medscape: Drug, diseases & procedures. Peritonitis and abdominal sepsis. Available at http://emedicine.medscape.com/article/180234-overview#a0104. Accessed Mar 29, 2011.
85. Lee CH, Liu MS, Hsieh SH. 2003. Aeromonas hydrophila bacteremia presenting as non-traumatic acute osteomyelitis in a cirrhotic patient. Chang Gung Med J 26:520-524.
86. Sanchez-Cespedes J, Figueras MJ, Aspiroz C, Aldea MJ, Toledo M, Alperi A, Marco F, Vila J. 2009. Development of imipenem resistance in an Aeromonas veronii biovar sobria clinical isolate recovered from a patient with cholangitis. J Med Microbiol 58:451-455.
87. Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF. 2009. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology 155:4170-4183.
88. Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madupu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, Heidelberg JF. 2006. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 188:8272-8282.
89. Li Y, Liu Y, Zhou Z, Huang H, Ren Y, Zhang Y, Li G, Wang L. 2011. Complete genome sequence of Aeromonas veronii strain B565. J Bacteriol 193:3389-3390.
90. Beatson SA, das Gracas de Luna M, Bachmann NL, Alikhan NF, Hanks KR, Sullivan MJ, Wee BA, Freitas-Almeida AC, Dos Santos PA, de Melo JT, Squire DJ, Cunningham AF, Fitzgerald JR, Henderson IR. 2011. Genome sequence of the emerging pathogen Aeromonas caviae. J Bacteriol 193: 286-1287.
91. Tayler AE, Ayala JA, Niumsup P, Westphal K, Baker JA, Zhang L, Walsh TR, Wiedemann B, Bennett PM, Avison MB. 2010. Induction of beta-lactamase production in Aeromonas hydrophila is responsive to beta-lactam-mediated changes in peptidoglycan composition. Microbiology 156:2327-2335.
92. Ko WC, Wu HM, Chang TC, Yan JJ, Wu JJ. 1998. Inducible beta-lactam resistance in Aeromonas hydrophila: therapeutic challenge for antimicrobial therapy. J Clin Microbiol 36:3188-3192.
93. Edquist P, Ringman M, Liljequist BO, Wisell KT, Giske CG. 2013. Phenotypic detection of plasmid-acquired AmpC in Escherichia coli--evaluation of screening criteria and performance of two commercial methods for the phenotypic confirmation of AmpC production. Eur J Clin Microbiol Infect Dis 32:1205-1210.
94. Walsh TR, Stunt RA, Nabi JA, MacGowan AP, Bennett PM. 1997. Distribution and expression of beta-lactamase genes among Aeromonas spp. J Antimicrob Chemother 40:171-178.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw