進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2201201409443900
論文名稱(中文) 生物活性鈣磷塗層之研究
論文名稱(英文) Characteristics and biological behavior of calcium phosphate duplex coating
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 102
學期 1
出版年 103
研究生(中文) 歐亞雨
研究生(英文) Otgontsetseg Khav
學號 T46017018
學位類別 碩士
語文別 英文
論文頁數 71頁
口試委員 指導教授-李澤民
口試委員-林睿哲
口試委員-陳炳宏
中文關鍵字   微弧氧化      射頻濺鍍法 
英文關鍵字 Titanium  Micro-arc oxidation  Calcium phosphate  Radio-frequency sputter deposition 
學科別分類
中文摘要 在生醫材料中,材料與細胞表面之間的交互作用是非常重要的議題。鈦金屬及其合金是目前廣泛應用於牙科及整形外科,然而鈦金屬為生物惰性材料,因此材料的表面改質變得至關重要。利用微弧陽極氧化表面改質後的鈦金屬,再藉由射頻濺鍍法,於材料表面上製備出含有雙倍鈣磷塗層的表面改質方法,希望將兩個表面改質方法做結合,以提高植入材的生物活性。在本研究中,將四種不同的純鈦表面(微弧氧化,噴砂酸蝕,吹砂和平滑表面),利用MG-63細胞進行細包貼附型態、細胞增生以及細胞分化測試。而在表面分析的項目中,利用SEM/EDS,TF-XRD,FTIR,表面粗度儀和接觸角測量等分析儀器進行表面特性分析。在SEM的觀察中得知,經由質過後的試片表面,為分布非常均勻之微米級多孔結構。經由TF-XRD分析過後確定,改質後表面均為銳鈦礦及金紅石相。而在熱處理溫度600℃處理後,改質後試片同時存在著氫氧基磷灰石、銳鈦礦及金紅石相。另外,MCP試片在表面粗糙度測試以及親疏水性測試當中得知有較高的數值,其中MCP600有最高之親水性。在細胞分化測試結果顯示,改質過後MCP試片相較於氫氧基磷灰石及其他熱處理組別比較,有較高之ALP活性反應。
由實驗結果得知,結合微弧氧化及鈣磷塗層之材料表面改質方法,顯示出很好的表面特性和細胞反應。
英文摘要 The ability cell surface interaction throughout control of biomaterial’s surface properties is critical. Titanium and its alloys widely used dental and orthopedic implant system. Titanium is bio-inert material, that’s why must be done surface modification. Radio-frequency sputtered thin film of calcium phosphate and micro-arc oxidation of titanium dioxide have much interest surface modification. We aimed combined these 2 method on pure titanium surface, which would be improve bioactivity of implant. In this study used four different titanium surfaces (micro-arc oxidation, acid etched, sandblasted and smooth), and evaluated by in vitro including cell morphology, proliferation and differentiation of MG-63cells. Surface analysis used SEM/EDS, TF-XRD, FTIR, surface roughness and contact angle measurements. The SEM image of that combined coating layer showed homogeneously numerous micro pores with different sizes and hydroxyapatite crystalline structure. TF-XRD data showed anatase and rutile phase. The all coatings composed of various anatase, rutile and HA phases are produced by heat treating at 6000C. The average surface roughness value of the MCP was high. The highest contact angle was measured on MCP600 specimen. The MCP specimen showed higher level of cell proliferation and ALP activity than the other HA coated and heat treated group of specimens.
This experiments suggests that combined coatings with MAO and Ca-P had well surface properties and cellular activity.
論文目次 ABSTRACT I
摘要 III
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES IX
CHAPTER ONE INTRODUCTION 1
1.1 Research Background. 1
CHAPTER TWO LITERATURE REVIEW 3
2.1 Titanium for dental implants 3
2.2 Bio ceramics 4
2.2.1 Hydroxyapatite 5
2.3 Implant surface modification 5
2.3.1 Grit blasting 6
2.3.2. Etching 6
2.3.3 Micro-arc oxidation 7
2.3.4 Radio-Frequency sputter deposition of Ca-P coatings 8
2.4 Research objective 11
CHAPTER THREE MATERIALS AND METHODS 12
3.1 Experimental procedure 12
3.2 Surface preparation 12
3.2.1 Smooth (Sm) 12
3.2.2 Sandblasting (SB) 13
3.2.3 Acid etching (SLA) 13
3.2.4 Micro-arc oxidation (MAO) 13
3.2.5 HA coating deposition by RF sputter 14
3.2.6 Heat treatment 14
3.3 Surface characteristic analysis 15
3.3.1 Surface topographic observation (SEM/EDS) 15
3.3.2 Surface wettability 15
3.3.3 Surface phase composition analysis 15
3.3.4 Fourier transform infrared spectroscopy 16
3.3.5 Surface roughness 16
3.4 In vitro cell test 16
3.4.1 Cell culture 16
3.4.2 Cell morphology 17
3.4.3 Cell proliferation 18
3.4.4 Alkaline phosphate activity assay 19
3.5 Statistical analysis 20
CHAPTER FOUR RESULTS 21
4.1 Specimen surface characteristic analysis 21
4.1.1 Surface morphology 21
4.1.2 Surface chemical composition analysis 22
4.1.3 Surface phase composition analysis 22
4.1.4 Fourier transform infrared measurement 23
4.1.5 Surface wettability 24
4.1.6 Surface roughness 24
4.2 Biocompatibility test 25
4.2.1 Cell morphology 25
4.2.2 Cell proliferation 26
4.2.3 Alkaline phosphate activity 26
CHAPTER FIVE DISCUSSION 27
CHAPTER SIX CONCLUSION 34
REFERENCES 36
參考文獻 1. Shidid, D., et al., Study of effect of process parameters on titanium sheet metal bending using Nd: YAG laser. Optics & Laser Technology, 2013. 47: p. 242-247.
2. PUCHNIN, M. and E. ANISIMOV, INVESTIGATION OF DLC COATING AND ITS INFLUENCE ON THE MECHANICAL PROPERTIES OF TITANIUM ALLOY TI-6AL-4V BY MEANS OF AUTOMATED BALL INDENTATION TEST.
3. Wen, G., et al., Development and Design of Binder Systems for Titanium Metal Injection Molding: An Overview. Metallurgical and Materials Transactions A, 2013. 44(3): p. 1530-1547.
4. Feng, B., et al., Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials, 2003. 24(25): p. 4663-4670.
5. Kuwabara, A., et al., Enhanced biological responses of a hydroxyapatite/TiO 2 hybrid structure when surface electric charge is controlled using radiofrequency sputtering. Dental materials journal, 2012. 31(3): p. 368-376.
6. Pelaez, M., et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012. 125: p. 331-349.
7. Wang, X.-X., et al., Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H< sub> 2 O< sub> 2/HCl solution. Biomaterials, 2002. 23(5): p. 1353-1357.
8. Damien, C.J. and J.R. Parsons, Bone graft and bone graft substitutes: a review of current technology and applications. Journal of Applied Biomaterials, 1991. 2(3): p. 187-208.
9. Le Guéhennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 2007. 23(7): p. 844-854.
10. Best, S., et al., Bioceramics: past, present and for the future. Journal of the European Ceramic Society, 2008. 28(7): p. 1319-1327.
11. Mendelson, B.C., et al., The fate of porous hydroxyapatite granules used in facial skeletal augmentation. Aesthetic plastic surgery, 2010. 34(4): p. 455-461.
12. Al-Sanabani, J.S., A.A. Madfa, and F.A. Al-Sanabani, Application of Calcium Phosphate Materials in Dentistry. International Journal of Biomaterials, 2013. 2013: p. 12.
13. Kumta, P.N., et al., Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomaterialia, 2005. 1(1): p. 65-83.
14. Aparicio, C., et al., Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 2003. 24(2): p. 263-273.
15. Massaro, C., et al., Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 2002. 13(6): p. 535-548.
16. Yerokhin, A., et al., Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999. 122(2): p. 73-93.
17. Liu, X., P.K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004. 47(3): p. 49-121.
18. Jin, F., et al., Thermal stability of titania films prepared on titanium by micro-arc oxidation. Materials Science and Engineering: A, 2008. 476(1): p. 78-82.
19. Han, Y., S.-H. Hong, and K. Xu, Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and coatings technology, 2003. 168(2): p. 249-258.
20. Arrabal, R., et al., Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corrosion Science, 2008. 50(6): p. 1744-1752.
21. Zhou, R., et al., The structure and in vitro apatite formation ability of porous titanium covered bioactive microarc oxidized TiO< sub> 2-based coatings containing Si, Na and Ca. Ceramics International, 2013.
22. Cimenoglu, H., et al., Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications. Materials Characterization, 2011. 62(3): p. 304-311.
23. Shi, J., et al., Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials. Bulletin of Materials Science, 2008. 31(6): p. 877-884.
24. Ogawa, T., et al., Ti nano-nodular structuring for bone integration and regeneration. Journal of dental research, 2008. 87(8): p. 751-756.
25. Kubo, K., et al., Cellular behavior on TiO< sub> 2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials, 2009. 30(29): p. 5319-5329.
26. Ter Brugge, P., J. Wolke, and J. Jansen, Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells. Journal of biomedical materials research, 2002. 60(1): p. 70-78.
27. Hulshoff, J., et al., Evaluation of plasma‐spray and magnetron‐sputter Ca‐P‐coated implants: An in vivo experiment using rabbits. Journal of biomedical materials research, 1996. 31(3): p. 329-337.
28. Ong, J., et al., Bone response to radio frequency sputtered calcium phosphate implants and titanium implants in vivo. Journal of biomedical materials research, 2002. 59(1): p. 184-190.
29. Kim, H.-W., et al., Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials, 2004. 25(13): p. 2533-2538.
30. Kim, D.-Y., et al., Formation of hydroxyapatite within porous TiO< sub> 2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomaterialia, 2009. 5(6): p. 2196-2205.
31. Tsai, M., S. Sun, and T. Tseng, Effect of oxygen to argon ratio on properties of (Ba, Sr) TiO thin films prepared by radio-frequency magnetron sputtering. Journal of applied physics, 1997. 82: p. 3482.
32. Lee, J., J. Lee, and Y. Lim, In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells. Applied Surface Science, 2010. 256(10): p. 3086-3092.
33. Li, L.-H., et al., Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 2004. 25(14): p. 2867-2875.
34. Porter, A., et al., Production of thin film silicon-doped hydroxyapatite via sputter deposition. Journal of materials science, 2004. 39(5): p. 1895-1898.
35. Yang, Y., et al., Osteoblast precursor cell attachment on heat-treated calcium phosphate coatings. Journal of dental research, 2003. 82(6): p. 449-453.
36. Boyd, A., et al., Characterisation of calcium phosphate/titanium dioxide hybrid coatings. Journal of Materials Science: Materials in Medicine, 2008. 19(2): p. 485-498.
37. Uchida, M., et al., Structural dependence of apatite formation on titania gels in a simulated body fluid. Journal of Biomedical Materials Research Part A, 2003. 64(1): p. 164-170.
38. Ramires, P., et al., The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials, 2001. 22(12): p. 1467-1474.
39. Yang, Y., et al., Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro. Biomaterials, 2002. 23(5): p. 1383-1389.
40. Kim, H.W., et al., Hydroxyapatite and titania sol–gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005. 72(1): p. 1-8.
41. Malaval, L., et al., Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. Journal of cellular biochemistry, 1999. 74(4): p. 616-627.
42. Declercq, H., et al., Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials, 2004. 25(5): p. 757-768.
43. Beck, G.R., et al., Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3‐E1 osteoblasts. Journal of cellular biochemistry, 1998. 68(2): p. 269-280.
44. Boyd, A., et al., The influence of argon gas pressure on co-sputtered calcium phosphate thin films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007. 258(2): p. 421-428.
45. Yang, B., et al., Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials, 2004. 25(6): p. 1003-1010.
46. Yuasa, T., et al., Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials, 2004. 25(7): p. 1159-1166.
47. Oji, M., J. Wood, and S. Downes, Effects of surface-treated cpTi and Ti6Al4V alloy on the initial attachment of human osteoblast cells. Journal of Materials Science: Materials in Medicine, 1999. 10(12): p. 869-872.
48. Zhang, Y., et al., Surface analyses of micro‐arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. Journal of Biomedical Materials Research Part A, 2004. 68(2): p. 383-391.
49. Kim, H.W., et al., Sol‐gel‐modified titanium with hydroxyapatite thin films and effect on osteoblast‐like cell responses. Journal of Biomedical Materials Research Part A, 2005. 74(3): p. 294-305.
50. Lincks, J., et al., Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials, 1998. 19(23): p. 2219-2232.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw