進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108202014583000
論文名稱(中文) 快速微流體電化學傳感器用於檢測微量白蛋白尿
論文名稱(英文) Rapid Microfluidic Electrochemical Biosensor for Microalbuminuria detection
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 李居佑
研究生(英文) Chi-Yu Li
學號 N96071342
學位類別 碩士
語文別 中文
論文頁數 83頁
口試委員 指導教授-傅龍明
口試委員-林哲信
口試委員-曾進忠
口試委員-饒達仁
口試委員-楊瑞珍
中文關鍵字 電化學傳感器  紙基裝置  微流體技術  白蛋白 
英文關鍵字 Electrochemical  Paper-based  Microfluidic  Albumin 
學科別分類
中文摘要 尿液白蛋白對於腎臟病及心血管疾病之早期檢查是極為重要的項目,尿液白蛋白的自我評估檢測可以使病患在早期出現病徵時就能夠及早發現,同時能及早治療或控制病情,防範疾病於未然才是生醫檢測的未來趨勢。
而紙基微流體分析技術具有便利、快速、成本效益、不需要大型設備和專業操作人員等等的優勢而難以取代。同時也僅僅只需要微量的樣品和反應試劑,即可提供快速、高靈敏度的檢測,具有相當龐大的市場潛力,使得人們生活更加豐富及便利。
本研究介紹了定量微量蛋白尿的紙基碳糊電極電化學生物傳感器和採用絲網印刷電極的測量方法。紙基碳糊電極檢測方法主要是利用電活性物質莧菜紅與白蛋白之間的相互作用,結合成大分子的電惰性聚合物,使莧菜紅濃度下降其響應電流也會下降;而絲網印刷電極的測量方法則是利用施加電位使莧菜紅吸附在電極表面,而後與白蛋白之相互作用產生電惰性分子,在電極表面電形成惰層,導致電子轉移阻抗增加,產生響應電流下降的現象。
接著利用伏安法探討不同白蛋白濃度導致響應電流以及峰電位之變化,以小型電化學裝置進行微量白蛋白尿之定量分析。
英文摘要 Microalbuminuria is an extremely important item for the early examination of kidney disease. The rapid detection of microalbuminuria allows patients to aware of symptoms early and treat or control the disease. In order to prevent the disease from worsening, it must be the trend of biomedical detection in future. This study attempts to combine microfluidics convenient, fast, high sensitivity characteristics and advantages of low cost and so on electrochemistry, experimental design integration. Research and use the interaction between amaranth and albumin, which is an electroactive substance, to combine the properties of electrically inert polymers into macromolecules, conduct experimental discussions and design detection methods, and conduct paper-based carbon paste electrodes and screen-printed electrodes. The discussion, the use of electrochemical methods for experimental analysis. This research is designed through the idea of electrochemistry combined with rapid screening, and by comparing real sample analysis with hospital results, it is determined whether the experiment can be analyzed in real samples and with accuracy. The resulting recovery rate is about "100±10%", which is expected to be further researched and applied in the future.
論文目次 中文摘要 I
目錄 IX
圖目錄 XII
表目錄 XVI
符號說明 1
第一章 緒論 2
1.1 研究動機 2
1.2 慢性腎臟疾病(Chronic Kidney Disease) 3
1.2.1 腎臟 4
1.2.2 尿液的基本成分 4
1.2.3 尿液常規檢驗 6
1.2.4 腎臟疾病以及心血管疾病與微量白蛋白尿之關係 7
1.3 微機電系統與微流體技術 10
1.4 電化學之發展 12
1.4.1 電化學檢測原理 12
1.4.2 循環伏安法 14
第二章 文獻回顧 17
2.1 微流體紙基晶片 17
2.1.1 微流體紙基晶片發展 17
2.1.2 微流體紙基晶片製程技術 20
2.1.3 微流體紙基晶片原理 25
2.2傳感器 28
2.2.1電化學傳感器 29
2.2.3 微流體紙基電化學晶片 30
2.3 人血清白蛋白 32
2.4 莧菜紅偶氮染料 35
第三章 實驗與方法 39
3.1 儀器與軟體 39
3.1.1 AutoCAD 39
3.1.2 SolidWorks 39
3.1.3 高溫爐(Oven) 40
3.1.4 電化學分析儀(Electrochemical Analyzer) 40
3.1.5 電子天秤(Electronic Balance) 41
3.1.6 酸鹼測定儀(pH Meter) 42
3.1.7 紫外光可見光光譜儀(Ultraviolet–visible spectroscopy) 42
3.1.8 超純水製造機(Water purification Syatem) 43
3.1.9 蠟印刷機(Wax printer) 44
3.1.10 可調節功率產生器暨量測器(SourceMeter) 44
3.2 藥品與溶液配置 45
3.2.1 藥品 45
3.2.2 溶液配置 46
3.4 實驗架構 47
3.4.1 實驗流程 47
3.4.2 分光光度法確認莧菜紅與白蛋白之結合關係 48
3.4.3 實驗原理 49
3.4.4 晶片夾具設計 55
3.4.5 實驗架設 56
3.5 紙基碳糊電極製作 57
第四章 結果與討論 59
4.1 碳糊電極製作與測試 59
4.1.1 檢測結果 59
4.1.2 穩定性分析 60
4.2 實驗之參數優化與選用 63
4.2.1 沈積電位對於莧菜紅吸附效果之影響 63
4.2.2 試劑混和順序對於響應結果之影響 64
4.2.3 鐵氰化鉀(K₃[Fe(CN)₆])之濃度參數選擇 66
4.2.4 莧菜紅(Amaranth)之濃度參數對於整體響應結果之影響 68
4.3 不同濃度之人血清白蛋白響應關係圖 71
4.4 樣品分析比對結果 74
4.4.1真實樣品分析與醫院檢測值比較 74
第五章 結論與展望 76
5.1 結論 76
5.2 展望 77
參考文獻 78
附錄 83

參考文獻 [1] 行政院衛生署,”107年主要死因分析”,2018。
[2] 許志成,2015,「台灣慢性腎臟病臨床診療指引專書」,國家衛生研究院,第53-66頁。
[3] L. A. Stevens, J. Coresh, T. Greene, A. S. Levey, Assessing kidney function—measured and estimated glomerular filtration rate, New England Journal of Medicine 354 (2006) 2473-2483.
[4] M. R. Weir, Microalbuminuria and cardiovascular disease, Clinical Journal of the American Society of Nephrology 2 (2007) 581-590.
[5] T. Ninomiya, V. Perkovic, B. E. De Galan, S. Zoungas, A.Pillai, M. Jardine, C. E. Mogensen, Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes, Journal of the American Society of Nephrology 20 (2009) 1813-1821.
[6] P. S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nature Reviews Drug Discovery 5 (2006) 210-218.
[7] G. M. Whitesides, The origins and the future of microfluidics, Nature 442 (2006) 368-373.
[8] W. B. Russel, W. B. Russel, D. A. Saville, W.R. Schowalter, Colloidal dispersions. Cambridge university press (1991).
[9] M. J. Canny, Flow and transport in plants, Annual Review of Fluid Mechanics 9 (1977) 275-296.
[10] C. M. Ho, Y. C. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annual Review of Fluid Mechanics 30 (1998) 579-612.
[11] E. Verpoorte, N. F. De Rooij, Microfluidics meets MEMS, Proceedings of the IEEE 91 (2003) 930-953.
[12] T. M. Squires, S. R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Reviews of Modern Physics 77 (2005) 977.
[13] L. M. Fu, C. H. Tsai, C. H. Lin, A high‐discernment microflow cytometer with microweir structure, Electrophoresis 29 (2008) 1874-1880.
[14] 李國賓,2005,「下一波生物晶片 – 微流體生醫晶片」,科學發展,385,第73-77頁。
[15] H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annual Review of Fluid Mechanics 36 (2004) 381-411.
[16] S. J. Lee, S. Lee, Micro total analysis system (μ-TAS) in biotechnology, Applied Microbiology and Biotechnology 64 (2004) 289-299.
[17] E. W. Weisstein, "Eric weisstein's world of science", Wolfram Research (2003).
[18] 藤嶋昭、相澤益男、井上徹,"电化学测定方法",北京大學出版社(1995).
[19] A. Bard, L. Faulkner," Electrochemical Methods - Fundamentals and Applications", Wiley (2001).
[20] 胡啟章,"電化學原理與方法",五南圖書出版 (2007).
[21] H. Yagoda, Applications of confined spot tests in analytical chemistry: preliminary paper. Industrial & Engineering Chemistry Analytical Edition 9 (1937) 79-82.
[22] R. B. Fisher, D. S. Parsons, G. A. Morrison, Quantitative paper chromatography, Nature 161 (1948) 764-765.
[23] J. P. Comer, Semiquantitative specific test paper for glucose in urine, Analytical Chemistry 28 (1956) 1748-1750
[24] Q. Yang, X. Gong, T. Song, J. Yang, S. Zhu, Y. Li, J. Chang, Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosensors and Bioelectronics 30 (2011) 145-150.
[25] S. Zainah, A. A. Wahab, M. Mariam, M. K. Fauziah, A. H. Khairul, I. Roslina, K.B Chua,. Performance of a commercial rapid dengue NS1 antigen immunochromatography test with reference to dengue NS1 antigen-capture ELISA. Journal of Virological Methods 155 (2009) 157-160.
[26] B. B. Dzantiev, N. A. Byzova, A. E. Urusov, A. V. Zherdev, Immunochromatographic methods in food analysis. TrAC Trends in Analytical Chemistry 55 (2014) 81-93.
[27] H. Xu, X. Mao, Q. Zeng, S. Wang, A. N. Kawde, G. Liu, Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis, Analytical Chemistry 81 (2009) 669-675.
[28] A. W. Martinez, S. T. Phillips, G. M. Whitesides, E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices, Analytical Chemistry 82 (2010) 3-10.
[29] X. Y. Liu ; C. M. Cheng ; A. W. Martinez ; K. A. Mirica ; X. J. Li ; S. T. Phillips ; M. Mascareñas,G. M. Whitesides, A portable microfluidic paper-based device for ELISA, In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, IEEE (2011) 75-78.
[30] A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Patterned paper as a platform for inexpensive, low‐volume, portable bioassays, Angewandte Chemie International Edition, 46 (2007) 1318-1320.
[31] E. M. Fenton, M. R. Mascarenas, G. P. López, S. S. Sibbett, Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Applied Materials & Interfaces 1 (2009) 124-129.

[32] Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin, Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay, Electrophoresis 30 (2009) 1497-1500.
[33] T. Songjaroen, W. Dungchai, O. Chailapakul, W. Laiwattanapaisal, Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta 85 (2011) 2587-2593.
[34] C. C. Liu, Y. N. Wang, L. M. Fu, D. Y. Yang, Rapid integrated microfluidic paper-based system for sulfur dioxide detection, Chemical Engineering Journal 316 (2017) 790-796.
[35] C. C. Liu, Y. N. Wang, L. M. Fu, K. L. Chen, Microfluidic paper-based chip platform for benzoic acid detection in food, Food Chemistry 249 (2018) 162-167.
[36] H. Zhang, Z. Zhao, Z. Lei, Z. Wang, Sensitive detection of polynucleotide kinase activity by paper-based fluorescence assay with λ exonuclease assistance, Analytical Chemistry 88 (2016) 11358-11363.
[37] W. J. Lan, E. J. Maxwell, C. Parolo, D. K. Bwambok, A. B. Subramaniam, G. M. Whitesides, based electroanalytical devices with an integrated, stable reference electrode, Lab on a Chip 13 (2013) 4103-4108.
[38] Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, G. M. Whitesides, M. Narovlyansky,Electrochemical sensing in paper-based microfluidic devices, Lab on a Chip 10 (2010) 477-483.
[39] Q. M. Feng, J. B. Pan, H. R. Zhang, J. J. Xu, H. Y. Chen, Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker, Chemical Communications 50 (2014) 10949-10951.
[40] M. Gerard, A. Chaubey, B. D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics 17 (2002) 345-359.
[41] A. J. Bard, L. R. Faulkner, J. Leddy, C. G. Zoski, Electrochemical Methods: Fundamentals and Applications Vol. 2 New York: wiley (1980).
[42] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications Vol. 2: Wiley New York, (1980) p.1.
[43] 李佳錚, "自組裝單層膜修飾電極在尿蛋白生醫感測之應用," 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2010.
[44] W. Dungchai, O. Chailapakul, C. S. Henry, Electrochemical detection for paper-based microfluidics, Analytical Chemistry 81 (2009) 5821-5826.
[45] P. Teengam, W. Siangproh, A. Tuantranont, C. S. Henry, T. Vilaivan, O. Chailapakul, Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus. Analytica Chimica Acta 952 (2017) 32-40.
[46] S. Sugio, A. Kashima, S. Mochizuki, M. Noda, K. Kobayashi, Crystal structure of human serum albumin at 2.5 Å resolution. Protein Engineering 12 (1999) 439-446.

[47] J. Ghuman, P. A. Zunszain, I. Petitpas, A. A. Bhattacharya, M. Otagiri, S. Curry, Structural basis of the drug-binding specificity of human serum albumin, Journal of Molecular Biology 353 (2005) 38-52.
[48] M. R. Ajmal, S. Nusrat, P. Alam, N. Zaidi, M. V. Khan, M. Zaman, R. H. Khan, Interaction of anticancer drug clofarabine with human serum albumin and human α-1 acid glycoprotein. Spectroscopic and molecular docking approach, Journal of Pharmaceutical and Biomedical Analysis 135 (2017) 106-115.
[49] N. Bijari, S. Moradi, S. Ghobadi, M. Shahlaei, Elucidating the interaction of letrozole with human serum albumin by combination of spectroscopic and molecular modeling techniques, Research in Pharmaceutical Sciences 13 (2018) 304.
[50] R. J. Yang, C. C. Tseng, W. J. Ju, L. M. Fu, M. P. Syu, Integrated microfluidic paper-based system for determination of whole blood albumin. Sensors and Actuators B: Chemical 273 (2018) 1091-1097.
[51] D. Webster, A. H. C. Bignell, E. C. Attwood, An assessment of the suitability of bromocresol green for the determination of serum albumin, Clinica Chimica Acta 53 (1974) 101-108.
[52] B. T. Doumas, W. A. Watson,, H. G. Biggs, Albumin standards and the measurement of sevam albumin with bromcresol green, Clinica Chimica Acta 31 (1971) 87-96.
[53] B. T. Doumas, P. T. Jr ,Serum and urine albumin:a progress report on their measurement and clinical significance, Clinica Chimica Acta 258 (1997) 3-20.
[54] F. L. Rodkey, Binding of bromocresol green by human serum albumin. Archives of Biochemistry and Biophysics 108 (1964) 510-513.
[55] J. Z., Tsai, C. J. Chen, K. Settu, Y. F. Lin, C. L. Chen, J. T. Liu, Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosensors and Bioelectronics, 77 (2016) 1175-1182.
[56] G. Zhang, Y. Yu, M. Guo, B. Lin, L. Zhang, A sensitive determination of albumin in urine by molecularly imprinted electrochemical biosensor based on dual-signal strategy, Sensors and Actuators B: Chemical 288 (2019) 564-570.
[57] 國家環境毒物研究中心,http://nehrc.nhri.org.tw/foodsafety/news.php?id=99。
[58] L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model, Dyes and Pigments 76 (2008) 440-446.
[59] L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of Amaranth aqueous solution on ACF, Journal of Hazardous Materials 137 (2006) 1182-1188.
[60] L. Ji, Y. Zhang, S. Yu, S. Hu, K. Wu, Morphology-tuned preparation of nanostructured resorcinol-formaldehyde carbonized polymers as highly sensitive electrochemical sensor for amaranth, Journal of Electroanalytical Chemistry 779 (2016) 169-175.

[61] W. Sun, K. Jiao, X. Wang, L. Lu, Electrochemical studies of the reaction between albumin and amaranth and its analytical application, Journal of Electroanalytical Chemistry 578 (2005) 37-43.
[62] J. R. Steter, W. R. Barros, M. R. Lanza, A. J. Motheo, Electrochemical and sonoelectrochemical processes applied to amaranth dye degradation, Chemosphere 117 (2014) 200-207.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw