進階搜尋


下載電子全文  
系統識別號 U0026-2108202014211900
論文名稱(中文) 水波槽内置擺盪獵能板工作效能之計算分析
論文名稱(英文) Numerical Analysis of the Wave-Energy Harvesting Performance of a Water Tank with an Oscillating Paddle
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 許惠傑
研究生(英文) Wai-Keat Koh
學號 N16077041
學位類別 碩士
語文別 英文
論文頁數 138頁
口試委員 指導教授-楊天祥
口試委員-何清政
口試委員-溫昌達
口試委員-陳國聲
中文關鍵字 波浪能轉換器(WEC)  自然頻率  擺盪板位置  擺盪板下水深度  輸出功率 
英文關鍵字 wave energy converter  natural frequency  submerged depth  paddle position  nominal output power 
學科別分類
中文摘要 台灣政府承諾在2025年前將台灣的可再生能源使用比例從5%提高至20%。政府希望以可再生能源取代化石燃料能源和核能源等不可再生能源,因為它們會對環境造成嚴重影響。波浪能具有很高的潛力成爲新一代的再生能源,這種技術有助於實現國家的目標。在前人的研究中,我們實驗室已經開發了兩種不同的波浪能轉換器(WEC)模型。然而這些模型有很多技術上的困難,例如忽略了擺盪壁旁的漏水問題和複雜的實驗設置。為了解決技術上的限制,本研究構建了一個改良模型,並考慮了兩種不同的驅動的方式。第一種是以擺盪板來驅動水槽,以研究該系統的自然頻率。通過調整擺盪板的位置和下水深度,系統的自然頻率發生了變化。另外,我們也發現系統可分離為左及右子系統,每個子系統會有著相對應的自然頻率。與此同時,系統的最小自然頻率為0.09赫茲 (Hz)。第二種情況是給定表面壓力來驅動擺盪板,並將水波能轉化為電能。當外力的頻率 w = 2.0 ,且擺盪板位置和下水深度分别設定在r = 0.8和d = 0.3中及優化後的擺盪板轉動慣量和剛性,我們可將輸出功率放大至 10^9 W。
英文摘要 The Taiwan government has pledged to increase the percentage of renewable energy use in Taiwan from 5% to 20% before 2025. They want to replace non-renewable energy like fossil fuel energy and nuclear fission energy because it will cost the environmental impact seriously. The water-wave energy has high potential to be the next generation of renewable energy and this promising technology would contribute toward country’s goal. Previously, two different wave energy converter (WEC) models had been developed in our laboratory. However, those models still have some technical impracticalities like to ignore the water leak beside the oscillating wall and the complicated set-up for the experimental system. To resolve the technical limitations, this study constructs modified model and consider two different cases of driving method. The first considered case includes an active paddle to drive the water tank for investigating the natural frequencies of the water tank. The results show that, by tuning the paddle position and submerge depth, the natural frequencies of the system are changed. Also, we found that the system can be separated into left and right subdomain and each of the subdomain has its own natural frequencies. Furthermore, the minimum natural frequency of water tank is recorded in 0.09 Hz. The second case contains the passive paddle to receive the water wave driving by the surface pressure and converts wave energy to the electric power energy. As the forcing frequency w = 2.0 , the paddle position and submerge depth are selected in r = 0.8 and d = 0.3, respectively, to amplify the electric power output up to 10^9 W with the optimized rotational moment of inertia and angular spring rigidity of the paddle.
論文目次 摘要 (i)
Abstract(ii)
誌謝 (iii)
Content (iv)
List of Tables (viii)
List of Figures (ix)
Nomenclature* (xiv)
Chapter 1 Introduction (1)
1.1 Background (1)
1.2 Literature Review (5)
1.2.1 OWC devices and prototypes (5)
1.2.2 Modelling and analysis (8)
1.3 Objectives of this work (11)
1.4 Structure of this Thesis (12)
Chapter 2 Mathematical Formulation (14)
2.1 Major Physical Assumptions (16)
2.2 Governing Equation and Boundary Condition (17)
2.2.1 General formulation for Case I and Case II (17)
2.2.2 Boundary Conditions for Case I (active paddle) (18)
2.2.3 Boundary Conditions for Case II (passive paddle) (19)
2.3 Normalization (23)
2.3.1 Boundary Condition for Case I (active paddle) (25)
2.3.2 Boundary Condition for Case II (passive paddle) (25)
2.4 Parameter setting (28)
2.4.1 Case I: Active Paddle (28)
2.4.2 Case II: Passive Paddle (30)
Chapter 3 Numerical Method (33)
3.1 Discretization (34)
3.1.1 Discretized boundary condition for active paddle (36)
3.1.2 Discretized boundary condition for passive paddle (37)
3.2 Steady Periodical Analysis (39)
3.2.1 Water surface amplitude analysis (39)
3.2.2 Case I: active paddle (41)
3.2.3 Case II: passive paddle (43)
3.3 Program Flow (45)
3.3.1 Flow chart for active paddle (45)
3.3.2 Flow chart for passive paddle (47)
3.4 Convergence test (50)
3.4.1 Grid and time series independence test (50)
3.4.2 Steady periodical test for active paddle (56)
3.4.3 Steady periodical test for passive paddle (58)
Chapter 4 Validation (60)
4.1 Validation the natural frequency of the decupled wave tank system (61)
4.2 Validation the nominal output power by the wave energy harvest wave tank (67)
Chapter 5 Natural Response (71)
5.1 The limiting case (d = 1) (72)
5.2 Normal Modes (76)
5.2.1 Natural frequencies of the system (79)
5.2.2 Mode shapes (82)
5.3 The analysis of Mode 0 (89)
5.3.1 The characteristic and mode shape of Mode 0 (89)
5.3.2 The simplify model for describing the Mode 0 (93)
Chapter 6 Power output and Optimization (96)
6.1 Forced response (97)
6.1.1 The case of symmetric forcing (98)
6.1.2 The case of anti-symmetric forcing (102)
6.2 Power Analysis (106)
6.3 Optimization Problems (111)
6.3.1 The wave frequencies in significant sea area (113)
6.3.2 The effects of paddle position and submerge depth (114)
6.3.3 The effects of rotational moment of inertia and angular spring rigidity (121)
Chapter 7 Conclusion and Future works (125)
7.1 Conclusion (125)
7.1.1 Natural Response (125)
7.1.2 Power output and optimization (126)
7.2 Contribution of this work (127)
7.3 Future works (128)
Reference (129)
Appendix I (132)
參考文獻 [1] Taiwan Power Company, https://www.taipwer.com.tw/tc/chart_m
[2] “Citizen of the Earth”, Taiwan, https://www.cet-taiwan.org/node/3051.
[3] Strange DLP, Tung T, Baker GC, Hangeramn G, Lewis LF, Clark RH, “Renewable energy resources: opportunities and constraints,” World Energy Council, pp.120:226-31, 2006.
[4] Hald T, Friis-Madsen E, Kodofed, “Hydraulic behaviors of the floating wave energy converter Wave Dragon,” Proceedings of the 10th Congress of International Maritime Association of the Mediterranean, Crete, Greece, paper no 103, 2002
[5] Kofoed JP, Frigaard P, Friis-Madnsen E, SØrensen HC, “Prototype testing of the wave energy converter wave dragon,” Renew Energy 31:181-189, 2006.
[6] ORECCA Project, “ORECCA European Offshore Renewable Energy Roadmap,” ORECCA Coordinated Action Project, 2011.
[7] Low Carbon Innovation Coordination Group, “Technology Innovation Needs Assessment (TINA) Marine Energy Summary Report,” 2012.
[8] Micklethwait J, “Technology Quarterly; the Coming Wave,” The Economist, 2008.
[9] “Ocean Current Energy Potential on the U.S. Outer Continental Shelf,” U.S. Department of the Interior Minerals Management Services, May 2006.
[10] Folley M, Curran R, Whittaker T, “Comparison of LIMPET contra-rotating wells turbine with theoretical and model test predictions,” Ocean Eng 33:1056–1069, 2006.
[11] Huckerby JA, Jeffrey H, Moran B, Sedgwick J, “International Vision for Ocean Energy, Version II” Ocean Energy Systems Implementing Agreement, 2012.
[12] Falcão AFO, “Wave energy utilization: a review of the technologies,” Renewable and Sustainable Energy Reviews, pp.14:899–918, 2013.
[13] Chen PH, Yang TS, “Performance analysis of a water tank with oscillating walls for wave energy harvesting,” Journal of Engineering Mathematics, pp.165-189, 2018.
[14] Currie IG, “Fundamental Mechanics of Fluids, Third Edition”, pp. 228-232, 2003.
[15] General Electric Company (2017) Fact sheet of GE generator. https://powergen.gepower.com/content/dam/gepowerpgdp/global/en_US/documents/product/generators/Fact%20Sheet/GEA32229%20Generators_FS_R3_LR.pdf. Accessed 29 Mar 2017.
[16] Liu CY, “Prototype System Development and Experimental Testing of Water-Wave Energy Harvester”, Master Thesis, National Cheng Kung University, 2019.
[17] Rezanejad K, Bhattacharjee J, Soares Cg, “Stepped sea bottom effects on the efficiency of nearshore oscillating water column device,” Ocean Eng, pp.70:25-38, 2013.
[18] Yukihisa Washio, Hiroyuki Osawa, Teruhisa Ogata,” The Open Sea Tests of The Offshore Floating Type Wave Power Devices “Mighty Whale”- Characteristics of Wave Energy Absorption and Power Generation,” Japan Marine Scinece and Technology Center, 2-15 Natsushima-cho Yokosuka 237-0061, MTS 0-933957-28-9, Japan, 2000.
[19] 王濬智,臧效義,陳建宏,“台灣離島海域波浪特性及波能潛勢分析”, Proceedings of the 33rd Ocean Engineering Conference, Taiwan National Kaohsiung Marine University, pp.859-864, December 2011.
[20] Harbor Environment Information Website, https://isohe.ihmt.gov.tw/national/wave/max-penghu.aspx#area-max
[21] Billingham J, King AC, “Wave Motion”, Cambridge Texts in Applied Mathematics, pp.74-130, 2000.
[22] Raj DD, sundar V, Sannasiraj SA, “Enhancement of hydrodynamic performance of an Oscillating Water Column with harbor walls”, Renewable Energy 132, Department of Ocean Engineering Indian Institute Technology Chennai 600036 India, pp.142-156, 2019.
[23] UKERC, “Marine Energy Technology Roadmap,”,2010.
[24] Micklethwait J, “Technology Quarterly; the Coming Wave,” The Economist, June 7, 2008.
[25] Nitin KUMAR Singh, “Wave Energy Harvesting,” Research Gate, March 2019.
[26] Goswami, Yogi D, Kreith, Frank, “Energy Conversion,” Boca Raton:CRC Press, 2007
[27] Bedard R, Rrevisic M, Hagerman G, “North American Ocean Energy Status March 2007,”Electric Power Research Institute (EPRI) Tidal Pwer (TP); Volume 8, 2007.
[28] Yukihisa Washio, Osawa H, Nagata Y, Fujiii F, Furuyama H, Fujita T, “The offshore Floating Type wave power device “Mighty Whale” Open Sea Tests,” Proceedings of the 10th International offshore and polar engineering conference, Vol.I , pp.373-380, 2000.
[29] Yukihisa Washio, “THe Offshore Folating Type Wave Power device “Mighty Whale” and Its Multi-Purpose Utilization,” Proceedings of the 6th International Symposium on Marine Engineering, pp 91-97, 2000.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw