進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108202003544500
論文名稱(中文) 超材料光吸收器設計與自供電型光偵測器之研究
論文名稱(英文) Study of metamaterial-based light absorber and self-powered photodetector
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 賴彥銓
研究生(英文) Yen-Chuan Lai
學號 N56071174
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-陳嘉勻
口試委員-蘇彥勳
口試委員-張御琦
口試委員-黃宗鈺
中文關鍵字 光吸收器  超材料  碳量子點  光偵測器 
英文關鍵字 light absorber  metamaterial  carbon quantum dot  photodetector 
學科別分類
中文摘要 具有極佳電磁波收集能力的超材料吸收器已被視為在先進光電元件與光能擷取應用的重要技術,在本研究中,通過設計三層的複合共振器結構超材料吸收器,使其在450 nm到600 nm波長範圍表現出寬頻的光吸收能力,平均吸收率超過95%。在共振時對三維空間中的激發電場,磁場和電場總強度進行了監測,以說明共振行為的原因,並且提出了一個等效LC電路模型,該模型可以通過調整複合共振器結構的參數來探索與結構幾何相關的吸收特性。此研究預計能夠實際應用於各種光學管理和光伏應用。
此外,本研究運用碳量子點所具備製程快速簡單、光敏性高等特性,結合矽基板製作出獨特的奈米粒子超材料光吸收器結構。經模擬與實驗結果證實此結構具有寬頻光吸收能力,在可見光頻譜的平均反射率達到13%;由光電轉換效率分析中證實在65 nm厚度下的碳量子點薄膜所構成的結構具有最佳的光電轉換效率達43.2%。在元件技術分析上,針對五種厚度的碳量子點薄膜進行光感測特性分析,光響應冪律關係分析結果說明了光電流與功率強度的相關性符合冪律關係,在65 nm厚度下的碳量子點所構成的結構最接近理想的光偵測器元件。在580 nm光源下,元件的最佳光響應度(Responsivity, R)和偵測度(Detectivity, D*)達到0.628 mA/W和9.36 x 1012 Jones,元件重要效率指標歸一化的光電流與暗電流之比(NPDR)與等效雜訊功率(NEP)則達到2.25 x 107 W-1和1.52 x 10-13 W·cm / Hz1 / 2,偵測器效率皆在零偏壓下進行量測,展現此元件的自供電 (self-powered) 能力;在元件耐性測試中,元件響應度在荷載200g、和溫度上升115℃下僅下降4.7%和1%,且在2000次週期循環下元件響應度不受影響,證實本研究結構具有高效能且極佳可靠性的寬頻光偵測性能。最後,對於碳量子點粒徑進行反射光譜與光電轉換效率的模擬分析,發現在粒徑為22 nm下可將元件在紫外光和可見光區段的光電轉換效率提升4 %左右,此研究預計能夠藉由改變碳量子點粒徑大小,調控光偵測器的工作區段。
英文摘要 Metamaterial absorber with the unexpected capability for harvesting electromagnetic energy has been regarded as a potential route for various applications. In this study, we presented the simple absorber structure through the involvement of hybrid dual-resonators that could allow the wideband light absorption covered from 450 nm to 600 nm with average absorptivity above 95%. In addition, this research used the high photosensitivity characteristics of carbon quantum dots, combined with silicon to create a unique nanoparticle metamaterial light absorber. The average reflectance results reached 13%. The IPCE analysis confirmed that the carbon quantum dot film with a thickness of 65 nm has the best result of 43.2%. In terms of device analysis, relationship between photocurrent and the involved power intensities of the incident light were fitted with power law. Under the 580 nm light source, the best responsivity and detectivity of the device reach 0.628 mA/W and 9.36 x 1012 Jones. The normalized photocurrent to dark current ratio and equivalent noise power reaches 2.25 x 107 W-1 and 1.52 x 10-13 W·cm / Hz1/2. The figures of merit are measured under zero bias which shows the self-powered ability of the photodetector. In line with reliability test, the responsivity of the device drops only 4.7% and 1% under a load of 200g and the temperature at 115°C. The on-off transient switching response of the photodetector was tested for 2000 cycles. The results verified that the stable and reliable operation capability of device performance that could be potential for practical use.
論文目次 中文摘要 I
Extended Abstract III
誌謝 X
目錄 XI
表目錄 XV
圖目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 超材料的源起與發展 3
2.1.1 超材料吸收器理論基礎 4
2.2 不同結構的寬頻超材料吸收器設計 6
2.2.1共平面式超材料吸收器 7
2.2.2 垂直堆疊式超材料吸收器 9
2.2.3 集總元件超材料吸收器 12
2.2.4 奈米顆粒超材料吸收器 14
2.3 光偵測器背景介紹 16
2.3.1 自供電型光偵測器 (Self-powered photodetector) 17
2.3.2 光偵測器之效率指數 (Figures of merit) 19
第三章 實驗儀器及流程 21
3.1 流程與介紹 21
3.2 實驗儀器 22
3.2.1 精密天秤 (Precision Balances) 22
3.2.2 超音波震盪機 (Ultrasonic Cleaner) 22
3.2.3 陶瓷加熱板 (Heating Panel) 22
3.2.4 伺服器等級桌上型電腦 22
3.2.5 電子束蒸鍍系統 (E-beam Evaporation System) 23
3.3 實驗藥品與材料 24
3.4 模擬設置 25
3.4.1 邊界條件 25
3.4.2 入射電磁波種類 25
3.4.3 監測器設定 25
3.4.4 模擬結構 26
3.5 實驗步驟 28
3.5.1矽基板準備 28
3.5.2 製備碳量子點薄膜 28
3.5.3 製備光偵測器元件 28
3.5.4 元件效率量測 29
3.6 分析量測儀器 30
3.6.1 紫外光可見光分光光譜機器 (UV-visible spectrometer) 30
3.6.2 傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FTIR) 30
3.5.3 電壓電流量測系統 (I-V Measurement System) 31
3.5.4 X光薄膜繞射儀 (X-Ray Diffractometer, XRD) 32
3.5.5 高解析場發射掃描式電子顯微鏡 (High Resolution Scanning Electron Microscope & Energy Dispersive Spectrometer, HR-SEM) 33
3.5.6 拉曼光譜分析儀 (Raman Spectrometer) 34
3.5.7 數位儲存示波器 (Digital Storage Oscilloscope, DSO) 35
第四章 結果與討論 36
4.1超材料吸收器分析 36
4.1.1 複合結構光譜分析 36
4.1.2 條狀結構共振器分析 37
4.1.3 正方形結構共振器分析 39
4.1.4 電場與磁場分析 41
4.1.5 複合結構的幾何參數分析 43
4.2 碳量子點薄膜分析 46
4.2.1 薄膜形貌分析 46
4.2.2 傅立葉轉換紅外線光譜分析 49
4.2.3 拉曼光譜分析 50
4.3 碳量子點薄膜/矽異質結構模擬分析 51
4.3.1 模擬及實驗反射光譜 51
4.3.2 電場模擬分析 53
4.3.3 光電轉換效率分析 55
4.4 碳量子點薄膜/矽異質結構光偵測器分析 57
4.4.1 I-V曲線分析 57
4.4.2 元件光響應與開關循環時間 61
4.4.3 光響應冪律關係分析 63
4.4.4 偵測器之效率指數 67
4.5 光偵測器元件可靠度 77
4.5.1 元件耐性測試 77
4.6 薄膜粒徑模擬分析 79
4.6.1 反射光譜分析 79
4.6.2 光電轉換效率分析 80
第五章 結論 81
第六章 未來展望 82
參考文獻 83
參考文獻 [1] Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., & Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano research, 8(2), 355-381, 2015.
[2] Mondal, S., Rana, U., & Malik, S. Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chemical Communications, 51(62), 12365-12368, 2015.
[3] Diao, S., Zhang, X., Shao, Z., Ding, K., Jie, J., & Zhang, X. 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy, 31, 359-366, 2017.
[4] Smith, D. R., Pendry, J. B., & Wiltshire, M. C. Metamaterials and negative refractive index. Science, 305(5685), 788-792, 2004.
[5] Cai, W., Chettiar, U. K., Kildishev, A. V., & Shalaev, V. M. Optical cloaking with metamaterials. Nature photonics, 1(4), 224-227, 2007.
[6] Engheta, N., & Ziolkowski, R. W. A positive future for double-negative metamaterials. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1535-1556, 2005.
[7] Veselago, V. G. The Electrodynamics of Substances with Simultaneously Negative Values of Img Align= Absmiddle Alt= ϵ Eps/Img and μ. Physics-Uspekhi, 10(4), 509-514, 1968.
[8] Pendry, J. B. Negative refraction makes a perfect lens. Physical review letters, 85(18), 3966, 2000.
[9] Shelby, R. A., Smith, D. R., Nemat-Nasser, S. C., & Schultz, S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters, 78(4), 489-491, 2001.
[10] Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. Perfect metamaterial absorber. Physical review letters, 100(20), 207402, 2008.
[11] Yu, P., Besteiro, L. V., Huang, Y., Wu, J., Fu, L., Tan, H. H., ... & Wang, Z. Broadband metamaterial absorbers. Advanced Optical Materials, 7(3), 1800995, 2019.
[12] Ma, W., Wen, Y., & Yu, X. Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Optics express, 21(25), 30724-30730, 2013.
[13] Cheng, Y., Nie, Y., & Gong, R. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics & Laser Technology, 48, 415-421, 2013.
[14] Ding, F., Cui, Y., Ge, X., Jin, Y., & He, S. Ultra-broadband microwave metamaterial absorber. Applied physics letters, 100(10), 103506, 2012.
[15] Grant, J., Ma, Y., Saha, S., Khalid, A., & Cumming, D. R. Polarization insensitive, broadband terahertz metamaterial absorber. Optics letters, 36(17), 3476-3478, 2011.
[16] Zhi Cheng, Y., Wang, Y., Nie, Y., Zhou Gong, R., Xiong, X., & Wang, X. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. Journal of Applied Physics, 111(4), 044902, 2012.
[17] Hedayati, M. K., Javaherirahim, M., Mozooni, B., Abdelaziz, R., Tavassolizadeh, A., Chakravadhanula, V. S. K., ... & Elbahri, M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Advanced Materials, 23(45), 5410-5414, 2011.
[18] Hedayati, M. K., Faupel, F., & Elbahri, M. Tunable broadband plasmonic perfect absorber at visible frequency. Applied Physics A, 109(4), 769-773, 2012.
[19] Hedayati, M. K., Zillohu, A. U., Strunskus, T., Faupel, F., & Elbahri, M. Plasmonic tunable metamaterial absorber as ultraviolet protection film. Applied Physics Letters, 104(4), 041103, 2014.
[20] Biswas, A., Eilers, H., Hidden Jr, F., Aktas, O. C., & Kiran, C. V. S. Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Applied physics letters, 88(1), 013103, 2006.
[21] Saib, A., Bednarz, L., Daussin, R., Bailly, C., Lou, X., Thomassin, J. M., ... & Huynen, I. Carbon nanotube composites for broadband microwave absorbing materials. IEEE transactions on microwave theory and techniques, 54(6), 2745-2754, 2006.
[22] Lussani, F. C., Vescovi, R. F. D. C., Souza, T. D. D., Leite, C. A., & Giles, C. A versatile x-ray microtomography station for biomedical imaging and materials research. Review of Scientific Instruments, 86(6), 063705, 2015.
[23] Bartels, R. A., Paul, A., Green, H., Kapteyn, H. C., Murnane, M. M., Backus, S., ... & Jacobsen, C. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science, 297(5580), 376-378, 2002.
[24] Zeskind, B. J., Jordan, C. D., Timp, W., Trapani, L., Waller, G., Horodincu, V., ... & Matsudaira, P. Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nature Methods, 4(7), 567-569, 2007.
[25] Fowler, B., Liu, C., Mims, S., Balicki, J., Li, W., Do, H., ... & Vu, P. A 5.5 Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications. In Sensors, Cameras, and Systems for Industrial/Scientific Applications XI (Vol. 7536, p. 753607) International Society for Optics and Photonics, 2010.
[26] Kallhammer, J. E. The road ahead for car night-vision. Nature Photonics, 5, 12-13, 2006.
[27] Kim, S., Lim, Y. T., Soltesz, E. G., De Grand, A. M., Lee, J., Nakayama, A., ... & Cohn, L. H. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature biotechnology, 22(1), 93-97, 2004.
[28] Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., & Giuranna, M. Detection of methane in the atmosphere of Mars. Science, 306(5702), 1758-1761, 2004.
[29] Konstantatos, G., & Sargent, E. H. Nanostructured materials for photon detection. Nature nanotechnology, 5(6), 391-400, 2010.
[30] Otuonye, U., Kim, H. W., & Lu, W. D. Ge nanowire photodetector with high photoconductive gain epitaxially integrated on Si substrate. Applied Physics Letters, 110(17), 173104, 2017.
[31] Liu, Q., Gong, M., Cook, B., Ewing, D., Casper, M., Stramel, A., & Wu, J. Transfer-free and printable graphene/ZnO-nanoparticle nanohybrid photodetectors with high performance. Journal of Materials Chemistry C, 5(26), 6427-6432, 2017.
[32] Lu, H., Tian, W., Cao, F., Ma, Y., Gu, B., & Li, L. A self‐powered and stable all‐perovskite photodetector–solar cell nanosystem. Advanced Functional Materials, 26(8), 1296-1302, 2016.
[33] Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. Self-powered nanowire devices. Nature nanotechnology, 5(5), 366-373, 2010.
[34] Wu, W., Bai, S., Yuan, M., Qin, Y., Wang, Z. L., & Jing, T. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS nano, 6(7), 6231-6235, 2012.
[35] Lai, Y. C., Chen, C. Y., Hung, Y. T., & Chen, C. Y. Extending Absorption Edge through the Hybrid Resonator-Based Absorber with Wideband and Near-Perfect Absorption in Visible Region. Materials, 13(6), 1470, 2020.
[36] Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE transactions on microwave theory and techniques, 47(11), 2075-2084, 1999.
[37] Zhou, J., Zhang, L., Tuttle, G., Koschny, T., & Soukoulis, C. M. Negative index materials using simple short wire pairs. Physical Review B, 73(4), 041101, 2006.
[38] Chen, C. Y., Chen, C. Y., Hsiao, P. H., Hsu, C. C., & Mani, K. Efficient metamaterial-based plasmonic sensors for micromixing evaluation. Journal of Physics D: Applied Physics, 49(3), 035501, 2015.
[39] Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., & Soukoulis, C. M. Magnetic response of metamaterials at 100 terahertz. Science, 306(5700), 1351-1353, 2004.
[40] Lahiri, B., McMeekin, S. G., Khokhar, A. Z., Richard, M., & Johnson, N. P. Magnetic response of split ring resonators (SRRs) at visible frequencies. Optics express, 18(3), 3210-3218, 2010.
[41] H. Xu, S. Zhou, L. Xiao, H. Wang, S. Li, Q. Yuan, Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe 3+. J. Mater. Chem. C, 3, 291-297, 2015.
[42] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS nano, 5102-5110, 2012.
[43] S. Chen, X. Hai, X.-W. Chen, J.-H. Wang, In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem., 86, 6689-6694, 2014.
[44] D.H. Kim, T.W. Kim, Ultrahigh current efficiency of light-emitting devices based on octadecylamine-graphene quantum dots. Nano Energy, 32, 441-447, 2017.
[45] Ş. Aydoğan, Ö. Güllü, A. Türüt, Fabrication and electrical characterization of a silicon Schottky device based on organic material. Phys. Scr, 79, 035802, 2009.
[46] S. Mukherjee, A. Pradhan, T. Maitra, S. Sengupta, S. Chakrabarti, A. Nayak, S. Bhunia, Carrier transport and recombination dynamics of InAs/GaAs sub-monolayer quantum dot near infrared photodetector. J. Phys. D, 52, 505107, 2019.
[47] A.K. Rana, J.T. Park, J. Kim, C.-P. Wong, See-through metal oxide frameworks for transparent photovoltaics and broadband photodetectors. Nano Energy, 64, 103952, 2019.
[48] Z. Zheng, J. Yao, L. Zhu, W. Jiang, B. Wang, G. Yang, J. Li, Tin dioxide quantum dots coupled with graphene for high-performance bulk-silicon Schottky photodetector. Mater. Horizons, 5, 727-737, 2018.
[49] C.-H. Tang, P.-H. Hsiao, C.-Y. Chen, Efficient Photocatalysts Made by Uniform Decoration of Cu2O Nanoparticles on Si Nanowire Arrays with Low Visible Reflectivity. Nanoscale Res. Lett., 13, 1-8, 2018.
[50] Chen, Y. Y., Wang, C. H., Chen, G. S., Li, Y. C., & Liu, C. P. Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect. Nano Energy, 11, 533-539, 2015.
[51] Zhang, Z., Liao, Q., Yu, Y., Wang, X., & Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy, 9, 237-244, 2014.
[52] Zheng, L., Yu, P., Hu, K., Teng, F., Chen, H., & Fang, X. Scalable-Production, Self-Powered TiO2 Nanowell–Organic Hybrid UV Photodetectors with Tunable Performances. ACS applied materials & interfaces, 8(49), 33924-33932, 2016.
[53] Bai, Z., Chen, X., Yan, X., Zheng, X., Kang, Z., & Zhang, Y. Self-powered ultraviolet photodetectors based on selectively grown ZnO nanowire arrays with thermal tuning performance. Physical Chemistry Chemical Physics, 16(20), 9525-9529, 2014.
[54] Chen, X., Liu, K., Zhang, Z., Wang, C., Li, B., Zhao, H., ... & Shen, D. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS applied materials & interfaces, 8(6), 4185-4191, 2016.
[55] Hong, Q., Cao, Y., Xu, J., Lu, H., He, J., & Sun, J. L. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array. ACS applied materials & interfaces, 6(23), 20887-20894, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw