進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108202002571900
論文名稱(中文) 液化地盤中群樁基礎縮尺模型振動台試驗
論文名稱(英文) Shaking Table Tests on A Scale-Model Pile Group in Liquefiable Ground
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 李宜庭
研究生(英文) Yi-Ting Li
電子信箱 n66084276@gs.ncku.edu.tw
學號 N66084276
學位類別 碩士
語文別 中文
論文頁數 142頁
口試委員 指導教授-柯永彥
口試委員-蔡祁欽
口試委員-邱俊翔
口試委員-陳家漢
中文關鍵字 土壤液化  群樁基礎  振動台試驗  層狀剪力盒  土壤應力-應 變關係  樁-土互制 
英文關鍵字 Soil Liquefaction  Shaking table  Laminar shear box  soil stress-strain relationship  Soil-Pile interaction 
學科別分類
中文摘要 本研究利用1-g縮尺物理模型振動台試驗,藉此探討群樁基礎於地盤發生液化時之受震反應特性,其為成功大學土木系與國家地震工程研究中心合作之套筒式基礎離岸風機縮尺模型試驗計畫之先導試驗。試驗使用新型雙軸向層狀剪力盒製作飽和砂土地盤試體,群樁模型之縮尺比例為1/25,採2x2矩形排列方式,基樁採用外徑81 mm及長度2m的鋁合金管模型設計之相似律主要基於樁-土互制行為來決定。採用頻率2Hz之正弦波形來做為輸入運動,進行單向簡諧激振試驗;分別使用由小到大為30gal、50gal、75gal之加速度振幅,以達到不同程度之受震反應與液化情況。根據超額孔隙水壓激發情況,顯示振幅為50gal時,土體一半深度已達到部分液化;在振幅為75gal時,土體幾乎完全液化。液化發生後,代表地盤受震反應之土體與剪力盒框架加速度明顯下降,且框架產生高頻反應,並與土體出現明顯的相角差。進一步以一維剪力梁模式計算地盤受震時之剪應力與剪應變,由土壤應力-應變遲滯圈變化情況,顯示液化後之土壤弱化現象,據以討論剪力模數-剪應變-超額孔隙水壓之間關係,並利用群樁與風機模型前後兩次50 gal振幅試驗探討重複液化現象。群樁受震反應在液化前與地盤大致同步,液化後其加速度出現高頻振動,且與地盤間出現明顯相角差;樁身撓曲應變與彎矩在液化前逐漸上升,液化後則大幅降低。從以上試驗結果,可呈現出液化過程中土壤力學性質與樁-土互制行為之變化,能夠有助於掌握液化地盤中樁基礎之耐震性能。
英文摘要 To investigate the seismic response of a pile group during soil liquefaction, shaking table tests on a 1/25 scale model of a 2×2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil-pile interaction. The input motions were 2 Hz sinusoids with various acceleration amplitude. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal amplitude excitation, while in the 75-gal amplitude test almost entire ground was liquefied. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, while both the movable frames and the piles exhibited high frequency jitters other than 2-Hz sinusoid, and meantime remarkable phase difference between the responses of the pile group and the ground was observed. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction. In addition, 1-D shear beam idealization was further introduced to deduce the stress-strain relationship of soil based on seismic ground response. Thus, the variation of mechanical properties of saturated sand with respect to the development of shear strain and excess pore water pressure were examined. The repeated liquefaction was also investigated using two of the excitation tests using the same input motion.
論文目次 摘要 i
Abstract iii
致謝 vii
目錄 viii
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1.1 研究背景及動機 1
1.2 研究方法與流程 3
1.3 論文架構 4
第二章 文獻回顧 7
2.1 土壤液化(Liquefaction)之定義 7
2.2 土壤液化對樁之影響 9
2.3 基樁受土壤液化影響之物理模型試驗回顧 13
2.4 土壤受震液化時之力學性質變化 18
第三章 試驗規劃準備 22
3.1 套筒式基礎離岸風機縮尺模型振動台試驗計畫簡介 22
3.1.1 試驗背景與目的 22
3.1.2 原型風機條件 23
3.1.3 模型之縮尺考量 23
3.1.4 試驗方法與內容 27
3.1.5 長衝程高速度地震模擬振動台 29
3.1.6 新型雙軸向柔性邊界剪力試驗盒 31
3.2 群樁基礎縮尺模型 33
3.2.1 地盤試體 33
3.2.2 群樁縮尺模型設計 37
3.2.3 模型自然頻率 44
3.3 量測儀器與配置 46
3.4 試驗步驟與輸入運動 52
3.4.1 群樁模型簡諧激振試驗 52
3.4.2 離岸風機模型地震模擬試驗 55
第四章 地盤受震反應 58
4.1 超額孔隙水壓與液化深度 58
4.1.1 30gal振幅簡諧激振試驗 58
4.1.2 50gal振幅簡諧激振試驗 60
4.1.3 75gal振幅簡諧激振試驗 64
4.2 地盤沉陷與相對密度變化 66
4.3 地盤加速度 67
4.3.1 30gal振幅簡諧激振試驗 68
4.3.2 50gal振幅簡諧激振試驗 70
4.3.3 75gal振幅簡諧激振試驗 72
第五章 地盤受震液化時之土壤力學性質變化 74
5.1 一維剪力梁簡化模式 74
5.2 土壤液化時之應力-應變關係 77
5.2.1 50gal振幅簡諧激振試驗 77
5.2.2 75gal振幅簡諧激振試驗 83
5.3 剪力模數-剪應變-超額孔隙水壓間關係 88
5.3.1 50gal振幅簡諧激振試驗 88
5.3.2 75gal振幅簡諧激振試驗 93
5.3.3 討論與比較 98
5.4 重複液化對液化地盤受震行為之影響 102
5.4.1 重複液化之簡介 103
5.4.2 超額孔隙水壓之激發與消散 104
5.4.3 土壤力學性質變化 106
第六章 群樁受震反應 111
6.1 樁身加速度 111
6.1.1 30gal振幅簡諧激振試驗 111
6.1.2 50gal振幅簡諧激振試驗 113
6.1.3 75gal振幅簡諧激振試驗 115
6.2 樁-土互制行為 117
6.2.1 樁-土加速度歷時曲線與傅氏譜比較 117
6.2.2 樁-土加速度振幅比較 122
6.2.3 樁土加速度相位比較 125
6.3 樁身應變與彎矩分佈 128
第七章 結論與建議 134
7.1 結論 134
7.2 建議 136
參考文獻 138
參考文獻 Abdoun, T., Dobry, R., O’Rourke, T., and Goh, S. ,“Pile response to ateral spreads: Centrifuge modeling”,Journal of Geotechnical and Geoenvironmental Engineering,ASCE, Vol. 129, No. 10, pp. 869-878 ,2003.
Aglipay M.R., Konagai K, Kiyota T, Kyokawa H. ,“Parametric analysis of active pile length and its application to the ultimate lateral pile resistance” Bulletin of ERS ,48:11-19 ,2015.
Alberto-Hernandez, Y., Towhata, I., “New insight in liquefaction after recent earthquakes: Chile, New Zealand and Japan.” In: Zouaghi, T. (Ed.), Earthquakes - Tectonics, Hazard and Risk Mitigation, IntechOpen Limited, London, pp. 117-137., 2017.
Bhattacharya, S., Lombardi, D., Wood, D.M.,“Similitude relationships for physical modelling of monopile-supported offshore wind turbines”, International Journal of Physical Modelling in Geotechnics 11 Issue2, pp58–68 ,June 2011.
Casagrande, A. ,“Characteristics of cohesionless soils affecting the stability of slopes and earth fills”, Journal of the Boston Society of Civil Engineers, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineers, 1940, pp.257-276. ,1936.
Chang, W.J., Ni, S.H., Huang, A.B., Huang, Y.H., Yung, Y.Z., “Geotechnical reconnaissance and liquefaction analyses of a liquefaction site with silty fine sand in Southern Taiwan.”, Engineering Geology123(3),pp235-245,Nov 2011.
Chen, C.H., Ting, G.C., Chang W.K., and Hwang J.H., “Development of a New Biaxial Shear Box for Shaking Table Tests Simulating Near-fault Earthquakes”, 8th Japan-Taiwan Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfall October, pp24-26, 2018, Kyoto, Japan
Chen, C.H. , Ko, Y.Y. , Chen, C.H. , Ueng, T.S. ,“Time-Dependent Dynamic Characteristics of Model Pile in Saturated Sand during Soil Liquefaction”, Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol. 47 No.1 March 2016 ISSN 0046-5828
Díaz-Rodríguez, J.A. , López-Molina, J.A. ,“Strain Thresholds in Soil Dynamics”. The 14th World Conference on Earthquake Engineering ,October 12-17, Beijing, China , 2008.
Dobry, R. ; Abdoun, T. “Cyclic Shear Strain Needed for Liquefaction Triggering and Assessment of Overburden Pressure Factor K_σ”, Journal of Geotechnical and Geoenvironmental Engineering ,Volume141,Articial Number 04015047,Nov-2015.
Dobry, Ricardo , Liu, Li ,“Centrifuge modelling of soil liquefaction”, Earthquake Engineering , Tenth World Coference Balkema , Rotterdam , ISBN90 5410 060 5, 1994.
Hardin, Bobby.O. , Drnevich, Vincent P. , “Shear Modulus and Damping in soils:Design Equations and curves”, Journal of the Soil Mechanics and Foundation Division Proceedings of the American Society of Civil Engineer s, July , 1972.
Hazen, A. "Hydraulic Fill Dams". Transactions of the American Society of Civil Engineers. 83: 1717–1745, 1920.
Horne, J.C and .Karmer, Steven.L , “Effects of Liquefaction on Pile Foundations”,WA-RD 430.1 , 1998
Ishihara, K. ,“Stability of natural deposits during earthquakes”, International conference on soil mechanics and foundation engineering. 11., pp 321-376 ; 1985 .
Ishihara, K. , “Liquefaction and flow failure during earthquakes” , Géotechnique Volume 43 Issue 3 , pp.351-451, September 1993.
Jonkman, J., Butterfield, S., Musial, W. , Scott G., “Definition of a 5-MW Reference Wind Turbine for Offshore System Development”, NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, 2009.
Ju, S.H., Huang, B.Y., Ni, S.H., Liu, K.Y., Ko, Y.Y., Hsu, S.Y., Chang, Y.W., Lu, L.Y., Ling, G.L. ,“Brief introduction of shaking table test of 1/25 scale model of offshore wind turbine with jacket foundation.”, International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, Taipei, Taiwan,2019.
Kiyota T., Yamada S., Hosono Y., “Repeated liquefaction observed during the 2010-2011 Canterbury earthquakes.” Bulletin of ERS,No.45, pp115-121, 2012.
Ko, Y.Y. , Chen, C.H. ,“ On the variation of mechanical properties of saturated sand during liquefaction observed in shaking table tests”, Soil Dynamics and Earthquake Engineering 129:10546 , 2020.
Koga Y, Matsuo O. “Shaking table tests of embankments resting on liquefiable sandy ground”, Soils and Foundations,Volume 30,Issue 4,pp 162-174 ,1990.
Konagai K., Yin Y., Murono Y. “Single beam analogy for describing soil-pile group interaction.” , Soil Dynamics Earthquake Engineering 23(3):PP31-39 , 2003.
Lombardi, D. and Bhattacharya, S. “Evaluation of seismic performance of pile-supported models in liquefiable soils.”, Earthquake Engineering & Structural DynamicsVolume 45, Issue 6 , pp1019–1038 , 2016.
Matoba Moeko and Kimura Yoshihiro. “Ultimate Strength of Steel Pile in Liquefied Soil Subjected to Multiple Earthquakes” ,the International Society of Offshore and Polar Engineers (ISOPE)ISBN 978-1 880653 85-2; ISSN 1098-6189.,2019
Poulos, H.G. and Davis, E.H., “Pile Foundation and Design”,1980
Prasad S.K.,Towhata I.,Chandradhara G.P. and Nanjundaswamy P. , “Shaking table tests in earthquake geotechnical engineering”, Current Science , VOL.87,No.10,25 November, 2004.
Quigley, M.C., Bastin, S., Bradley B.A.. “Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence.” , Geology 41(4):419-422 , 2013.
Seed, H.B., “Evaluation of soil liquefaction potential for level ground during earthquakes”,1975
Seed, H.B., Idriss, I.M., “Soil Moduli and Damping Factors for Dynamic Response Analysis.” ,Report No. EERC 70-10. Earthquake Engineering Research Center: Berkeley, CA, 1970.
Tokimatsu, K. and Asaka, Y ,“Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogeken-Nambu earthquake”, Special issue of Soils and Foundations, pp 163-177, Sep 1998
Tomlinson, M, Woodward, J. ,“Pile Design and Construction Practice (5th ed)”. Abingdon: Taylor & Francis; 2008.
Towhata, I., Goto, S., Taguchi, Y., Aoyama, S., “Liquefaction consequences and learned lessons during the 2011 Mw=9 Gigantic Earthquake.” ,Indian Geotechnical Journal 43(2) , 116-126 , 2013.
Townsend, D., Lee, J.M., Strong, D.T., Jongens, R., Lyttle, B.S., Ashraf, S., Rosser, B. , Perrin, N., Lyttle, K., Cubrinovski, M., Taylor, M.L., Hughes, M.W., Wilson, T., Almond, P., Jacka, M., McCahon, I., Christensen, S.,“Mapping surface liquefaction caused by the September 2010 and February 2011 Canterbury earthquakes: a digital dataset.”, New Zealand Journal of Geology and Geophysics 59(4), pp496-513, 2016.
Tsai, C.C., Hsu, S.Y., Wang, K.L., Yang, H.C., Chang, W.K., Chen, C.H., Hwang, Y.W. “Geotechnical reconnaissance of the 2016 ML 6.6 Meinong earthquake in Taiwan.”, Journal of Earthquake Engineering Volume22(9), pp1710-1736. , 2018.
Ueng, T.S. , Wang, M.H., Chen, M.H., Chen, C.H., Peng, L.H. , “Large Biaxial Shear Box for Shaking Table Test on Saturated Sand” , Geotechnical Testing Journal, Vol. 29, No. 1 Paper ID GTJ12649,2006.
Vecetic, M. ,Dobry, R.,“Effect Of Soil Plasticity On Cyckic Response”, Journal of Geotechnical Engineering Volume.117(1), January , 1991.
WindEurope , “Offshore Wind in Europe - Key trends and statistics”, 2019.
Ye, B., Ye, G., Zhang, F., Yashima, A., 2007. “Experiment and numerical simulation of repeated liquefaction-consolidation of sand.” Soils and Foundations 47(3), pp547-558., June 2007.
Zeghal, M., Elgamel, A.W.,“Analysis of site liquefaction using earthquake records”, Journal of Geotechnical Engineering, 120(6): 996-1017,June 1994.
台灣電力公司,「離岸風力發電第二期計畫可行性研究」,2018年8月。
林俶寬,「離岸風電之海底電纜在大地工程考量重點」,大地技師,第18期,81-87頁,2019。
徐偉朝與蘇曉珮,「離岸風電工程設計之實務挑戰」,大地技師,第18期,第35-43頁,2019。
翁作新、陳正興、黃俊鴻,國內土壤受震液化問題檢討,地工技術,(100),Page63-78,2004。
國家地震工程研究中心,「台灣離岸風機支撐結構設計準則」,2018。
國家地震工程研究中心台南實驗室,擷取自地震模擬室: https://www.ncree.org/Ncree.aspx?id=4#S。
楊宗翰,「具不同上部結構之樁基礎受振行為」,國立中央大學土木工程所,碩士論文,2016。
冀樹勇、王天佑、譚志豪,「離岸風機基礎設計實務」,地工技術,142期,PP17-24,2014。
賴姿妤,樁基礎沖刷橋梁模型之振動台試驗研究,國立台灣大學土木工程學研究所,碩士論文,2011。
薛惠文,縮尺比例套筒式基礎離岸風機結構模型振動台實驗研究,國立成功大學土木工程研究所,碩士論文,2019。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw