進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201915324400
論文名稱(中文) 水下LED色彩補償照明模組之設計與評估
論文名稱(英文) Design and estimate of a color compensation module for underwater LED lighting
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳志宇
研究生(英文) Zhi-Yu Chen
學號 P16064112
學位類別 碩士
語文別 中文
論文頁數 89頁
口試委員 口試委員-林大偉
口試委員-林俊成
口試委員-張祥傑
指導教授-沈聖智
中文關鍵字 水下光衰  水下影像  可調式照明 
英文關鍵字 Underwater light decay  Underwater image  Adjustable lighting 
學科別分類
中文摘要 本論文是整合多色LED模組、各波長之水下光衰模型及光色補償方法建構水下LED色彩補償照明燈具。其中,多色LED模組分別由(B1)430 nm、(B2)420 nm、(B3)460 nm、(G1)590 nm、(G2)520 nm、(G3)490 nm、(R1)660 nm、(R2)680 nm、(R3)630 nm以及色溫6000K之正白光共10種色光所組成,並能調配出近似太陽光之照明效果。光色補償方法是針對不同波長之光強度在水下傳遞的衰減率,再經計算各波長所需補償之光強度並將訊號回傳至MCU控制器以調變多色LED模組,達到水下色彩還原之效果。由水下照明實驗顯示,當白光LED隨著目標物的距離越遠,在紅色波段(630~680nm)的衰減率大於藍色波段(420~460nm),尤其紅色波段在距離目標物4m時,其紅色圖卡即轉變為黑色,藍綠圖卡雖轉為暗黑色系但仍可辨識,這表示紅色波段能量已消耗殆盡,而藍綠波段能量也有不等程度之損耗。由此得知,水中光色的補償必須大幅提升紅色波段之能量,再逐漸調整藍、綠波段之能量,以有效還原水中目標物損失之色彩,提供水下環境色彩辨識之能力,解決目前深海中因色衰現象導致物體顏色無法顯現,使得影像技術無法進行顏色校正問題。本文研製之LED色彩補償燈具僅需光源與目標物的水平距離即可補償光色損失之能量,再透過Practical Color Coordinate System(PCCS)色卡來檢視LED色彩補償照明燈具對於水下色彩的還原能力,以驗證LED色彩補償照明燈具相比白光LED、紅光LED及混合白光等光源更適合水下照明。
英文摘要 In this paper, we construct a color compensation module for underwater LED lighting, and propose a method based on the distance between the light source and the object to compensate for the loss of color of the object in the water. For module construction, we use 10 kinds of color LEDs to mix light, and adjust the mixed white light to simulate the illumination effect of sunlight, so that the color of water objects can be restored. Also, nine underwater light attenuation models of color light are also constructed. For the underwater light decay model, we use Beer-lambert law as the basis. Through the absorption coefficients of different wavelengths, we can obtain the underwater light decay curves of 9 kinds of color light by underwater light attenuation model. Finally, the underwater compensation curve of 9 kinds of color light is obtained through the underwater light attenuation curve of 9 kinds of color light, and the compensation results of 9 kinds of color light are realized by micro control unit. We use three kinds of light sources underwater to restore the color of the swatches, which are white LEDs, mixed white light and underwater LED color compensation lighting modules. The results show that the underwater LED color compensation lighting module is the most effective for the color reduction of swatches. This lighting can change the brightness of the distance to restore the color in the water.
論文目次 目錄

中文摘要 I
Extended Abstract II
目錄 X
圖目錄 XIII
表目錄 XVI
符號表 XVII
第一章緒論 1
1.1 研究背景與目的 1
1.2 研究方法 4
1.3 論文架構 5
第二章文獻回顧 7
2.1 光源於水體之傳遞行為 7
2.1.1 吸收影響 7
2.1.2 不同水域之衰減情形 9
2.2 水下物體顏色之重建方法 10
2.2.1 偏振技術應用 10
2.2.2 影像處理 11
2.2.3 光色能量補償 13
2.3 水下LED燈具 15
第三章水下LED色彩補償照明模組之建構 20
3.1 水下光學原理 20
3.1.1 水下光源吸收之數學模型 20
3.1.2 水下光色補償方法 26
3.2 混合白光之調配 28
3.3 水下LED色彩補償照明模組之建構 33
第四章色彩補償照明燈具開發與實驗設計 37
4.1 水下LED彩色補償照明模組之電壓電流參數 37
4.2 實驗設計 48
4.2.1 實驗環境之設置 48
4.2.2 PCCS色卡檢視方法 50
4.2.3 使用白光LED對紅、綠、藍色塊之顏色變化 52
第五章實驗結果與討論 53
5.1 水下四種光源之測試結果 53
5.1.1 色板顏色之變化 53
5.1.2 各光譜之變化 54
5.1.3 各光源之CRI表現 61
5.2 PCCS色卡檢視 62
第六章結論與未來展望 70
6-1 結論 70
6-2 未來展望 71
參考文獻 72
附錄 75
1.1 三原色光之混合 75
1.1.1 色光之加法混合 75
1.1.2 色料之減法混合 76
1.1.3 格拉斯曼法則 77
1.2 色光之評價 78
1.2.1 配色函數實驗 78
1.2.2 人眼對色光的感知 79
1.2.3 配色系統之演變 81
1.2.4 演色性 85
參考文獻 [1] 楊愷祥,「LED照明光源」,明道大學光電科學研究所碩士論文,2010
[2] M. Edge, “The underwater photographer,” Routledge, pp. 13, 2012.
[3] L. A. Torres-Méndez , and G. Dudek, “A statistical learning-based method for color correction of underwater images,” Research on computer science,vol.17, no10,pp. 3-9, 2005.
[4] I. Vasilescu, C. Detweiler, and D. Rus, “Color-accurate underwater imaging using perceptual adaptive illumination,” Autonomous Robots, vol 31, no2-3, pp.285, 2011.
[5] A. Yamashita, M. Fujii, and T. Kaneko, “Color registration of underwater images for underwater sensing with consideration of light attenuation,” In Proceedings IEEE International Conference on Robotics and Automation, pp. 4570-4575, 2007.
[6] J. D. Ingle Jr, and S. R. Crouch, “Spectrochemical analysis,” vol. 61, no. 6,pp. 389, 1988.
[7] Retrieved June 30, 2019, from http://w3.oc.ntu.edu.tw/chap3/node5.htm
[8] J. R. Curran, “A strategy for the use of light emitting diodes by autonomous underwater vehicles,” Doctoral dissertation, Massachusetts Institute of Technology, pp. 165, 2004.
[9] Retrieved June 30, 2019, from https://pansci.asia/archives/32338
[10] S. Choi, H. Arakawa, Y. Nakamura, and T. Arimoto, “Transmittance characteristics of fishing light according to the optical water type in the squid jigging ground of the Sea of Japan,” Bulletin of the Japanese Society of Scientific Fisheries Japan, pp. 2-4, 1998.
[11] T. Treibitz, Y. Y. Schechner, “Active polarization descattering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 3, pp. 385-399, 2009.
[12] M. Chambah, D. Semani, A. Renouf, P. Courtellemont, and A. Rizzi, “Underwater color constancy: enhancement of automatic live fish recognition,” In Color Imaging IX: Processing, Hardcopy, and Applications, vol. 5293, pp. 157-169, 2003.
[13] L. A. Torres-Méndez, and G. Dudek, “Color correction of underwater images for aquatic robot inspection,” In International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 60-73, 2005.
[14] B. Henke, M. Vahl, and Z. Zhou, “Removing color cast of underwater images through non-constant color constancy hypothesis,” In2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 20-24, 2013.
[15] L. Kan, J. Yu, Y. Yang, H. Liu and J. Wang, “Color correction of underwater images using spectral data,” In Optoelectronic Imaging and Multimedia Technology III, vol. 9273, pp. 92730, 2014.
[16] S. Rosser, “Underwater photographic lighting using light emitting diodes,”, Doctoral dissertation, Massachusetts Institute of Technology, pp. 95, 2003.
[17] C. D. Mobley, “Light and water: radiative transfer in natural waters Academic press,” San Diego, CA, pp. 592, 1994.
[18] S. Bateman, “Hydrographic surveys and marine scientific research: differences, overlaps and implications,” University of Wollongong, pp.1-31, 2003.
[19] American National Standards Institute (ANSI), “ANSI ANSLG C38.377 Specifications for The Chromaticity of Solid State Lighting Products,” , 2008.
[20] Retrieved July 1, 2019, from http://zekpan.blogspot.com/2013/08/ir-filter.html
[21] Retrieved July 2, 2019, from https://www.gameislearning.url.tw/article_content.php?getb=5&foog=9998
[22] 陳鴻興等,顯示色彩工程學,全華圖書,台北市,pp18~22,2011.
[23] Retrieved July 2, 2019, from http://webvision.med.utah.edu/
[24] Retrieved July 3, 2019, from https://zhuanlan.zhihu.com/p/24281841
[25] G. Wyszecki, “Technical Notes: Recent Agreements Reached by the Colorimetry Committee of the Commission Internationale de l’Eclairage,” JOSA, vol. 58, no. 2, pp. 290-292, 1968.
[26] Retrieved July 4, 2019, from http://www. cie.co.at/main/freepubs.html.
[27] A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” JOSA A, vol.10, no. 12, pp 2491-2521, 1993.
[28] Retrieved July 5, 2019, from http://www.dic-color.com/knowledge/xyz.html
[29] Retrieved July 5, 2019, from https://kotobank.jp/word/CIE%E8%A1%A8%E8%89%B2%E7%B3%BB-71680
[30] N. Ohta, and A. Robertson, “Colorimetry: fundamentals and applications,” Rochester Institute of Technology, pp.119-128, 2006.
[31] E. Fred Schubert, “Light-Emitting Diodes,” Cambridge university press, pp. 318-319, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw