進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201915215300
論文名稱(中文) 陽離子摻雜對鈣鈦礦電阻式記憶體特性影響之研究
論文名稱(英文) Influence of the mixed cation in lead iodide based perovskite on the performance of resistive random access memory
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 王士毓
研究生(英文) Shi-Yu Wang
學號 N26061034
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-施權峰
口試委員-許正興
口試委員-林育儒
口試委員-陳家豪
口試委員-尤正祺
中文關鍵字 鈣鈦礦太陽能電池  電阻式記憶體  陽離子摻雜甲脒及銫 
英文關鍵字 perovskite  RRAM  Formamidinium iodide  Cesium iodide 
學科別分類
中文摘要 有機-無機混合鈣鈦礦因為優越的材料特性,已被運用在不同功能的元件上,例如:發光二極體、太陽能電池、光感測器、電阻式記憶體…等元件。許多研究指出摻雜陽離子與陰離子可以提升鈣鈦礦太陽能電池性能,而卻無文獻研究在電阻式記憶體上的應用。
本論文研究分為兩部分。第一部分討論在一般的鈣鈦礦(MAPbI3)中摻雜不同濃度的甲脒氫碘酸(FAI),研究其薄膜與元件特性的變化。由於甲脒(FA+)的離子半徑比甲胺(MA+)大,所以可以提高公差因子並誘導形成穩定的立方鈣鈦礦相,並增加薄膜的晶粒大小,降低晶界的邊際效應,提升鈣鈦礦主動層的吸光能力,使短路電流上升,致使太陽能元件的光電轉換效率提升。而在電阻式記憶體方面,由於FAI的添加可以穩定鈣鈦礦的晶體結構,改善元件的穩定度,致使記憶次數有明顯的提升。當摻雜75% 的FAI時,太陽能電池的轉換效率來到了10.8%,而電阻式記憶體則有100次左右的記憶次數。
第二部分則是將第一部分的最佳參數進行無機碘化銫(CsI)的微量摻雜,研究其薄膜與元件特性的變化。由於CsI的摻雜可以提升結晶性,形成高覆蓋率且緻密無孔洞的高品質鈣鈦礦薄膜,降低薄膜的缺陷,使開路電壓上升,致使太陽能元件的光電轉換效率提升。而在電阻式記憶體方面,由於CsI的添加可以改善薄膜品質,降低薄膜缺陷,因此可以穩定電阻式記憶體的on/off ratio。當摻雜5%的 CsI時,太陽能電池的轉換效率來到了14.2%,而電阻式記憶體則有120次左右的記憶次數及10的4次方左右的on/off ratio。
英文摘要 This research involves two parts. The first part discusses the effects of doping different concentrations of formamidinium iodide (FAI) into MAPbI3 perovskite on the properties of perovskite based films and photovoltaic devices. Since the ionic radius of formamidinium (FA+) is larger than that of methylammonium (MA+), the FA doping increases the tolerance factor and forms a stable cubic perovskite phase, enhancing the grain size of the film and reducing the marginal effect of the grain boundary that improves the light absorption of the perovskite layer. In the case of resistive random access memory (RRAM) device, the addition of FAI stabilizes the crystal structure of the perovskite, improving the stability of device that results in a significant increase in the number of memory cycles. When 75% FAI was doped in perovskite, the RRAM device performs about 100 memory cycles.
The second part of this thesis discusses the optimization of the parament characteristics of FAxMA1-xPbI3 perovskite that was doped with Cesium iodide (CsI). The crystallinity was improved by the CsI doping, and a high-quality and highly covered perovskite film with reduced defects. In the case of RRAM device, the on/off ratio can be stabilized. When 5% CsI is doped, the RRAM device has about 120 memory cycles and on/off ratio reaches 10000.
論文目次 摘要 I
目錄 II
圖目錄 XXV
表目錄 XXIX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧與理論基礎 4
2-1 文獻回顧與基礎理論 4
2-1-1 太陽能電池 4
2-1-2 離子摻雜對鈣鈦礦影響之相關研究 5
2-2 記憶體介紹 7
2-2-1 磁阻式記憶體(MRAM) 7
2-2-2 相變化記憶體(PCRAM) 8
2-2-3 鐵電記憶體(FeRAM) 9
2-2-4 電阻式記憶體(RRAM) 10
2-3 電阻轉換機制 12
2-3-1 金屬離子的電化學效應(Electrochemical metallization effect,ECM) 12
2-3-2 價電子轉換效應(Valence change effect,VCM) 14
2-3-3 熱化學效應(Thermochemical effect,TCM) 15
2-4 介電層導電機制 15
2-4-1 熱發射(Thermionic emission)蕭特基發射(Schottky emission) 15
2-4-2 空間電荷限制電流(Space-Charge-Limited-Current,SCLC) 16
2-4-3 F-N穿隧與直接穿隧(Fowler-Nordheim and Direct Tunneling) 17
2-4-4 普爾-法蘭克發射(Poole-Frenkel emission) 19
2-4-5 歐姆傳導(Ohmic Conduction) 20
2-4-6 離子傳導(Ionic conduction) 20
第三章 實驗步驟與方法 22
3-1 太陽能電池元件製程 22
3-1-1 基板清洗 22
3-1-2 電洞傳輸層薄膜製備 22
3-1-3 鈣鈦礦(MAPbI3 、FAMAPbI3、FAMACsPbI3)薄膜製備 22
3-1-4 電子傳輸層薄膜製備 23
3-1-5 緩衝層蒸鍍 23
3-1-6 上電極鋁蒸鍍 23
3-2 電阻式記憶體元件製程 24
3-2-1 鈣鈦礦(MAPbI3 、FAMAPbI3、FAMACsPbI3)薄膜製備 24
3-2-2 絕緣層製備 25
3-2-3 上電極鋁蒸鍍 25
3-3 物性與電性分析儀器介紹 26
3-3-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 26
3-3-2 結晶繞射分析(X-ray diffraction,XRD) 27
3-3-3 微拉曼及微光激發螢光光譜儀(Micro-Raman & Micro-PL Spectrometer) 29
3-3-4 紫外光-可見光-近紅外光分光光譜儀 (UV/Visible/NIR Spectrophotometer) 30
3-3-5 電壓-電流量測 31
第四章 結果與討論 34
4-1 陽離子FA摻雜對鈣鈦礦薄膜與元件之影響 34
4-1-1 FA+摻雜對鈣鈦礦薄膜之影響 34
4-1-2 FA+摻雜對鈣鈦礦太陽能電池元件之影響 40
4-1-3 FA+摻雜對鈣鈦礦電阻式記憶體元件之影響 44
4-2 陽離子Cs摻雜對鈣鈦礦薄膜與元件之影響 53
4-2-1 Cs+摻雜對鈣鈦礦薄膜之影響 53
4-2-2 Cs+摻雜對鈣鈦礦太陽能電池元件之影響 59
4-2-3 Cs+摻雜對鈣鈦礦電阻式記憶體元件之影響 61
第五章 結論與未來規劃 66
5-1 結論 66
5-2 未來規劃 66
文獻回顧 67
參考文獻 [1] D. Liu and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature Photonics, vol. 8, no. 2, pp. 133-138, 2013.
[2] L. Etgar et al., "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells," J Am Chem Soc, vol. 134, no. 42, pp. 17396-9, Oct 24 2012.
[3] Z. K. Tan et al., "Bright light-emitting diodes based on organometal halide perovskite," Nat Nanotechnol, vol. 9, no. 9, pp. 687-92, Sep 2014.
[4] L. Dou et al., "Solution-processed hybrid perovskite photodetectors with high detectivity," Nat Commun, vol. 5, p. 5404, Nov 20 2014.
[5] D. Shi et al., "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals," Science, vol. 347, no. 6221, p. 519, 2015.
[6] E. J. Yoo, M. Lyu, J. H. Yun, C. J. Kang, Y. J. Choi, and L. Wang, "Resistive Switching Behavior in Organic-Inorganic Hybrid CH3 NH3 PbI3-x Clx Perovskite for Resistive Random Access Memory Devices," Adv Mater, vol. 27, no. 40, pp. 6170-5, Oct 28 2015.
[7] A. Binek, F. C. Hanusch, P. Docampo, and T. Bein, "Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide," J Phys Chem Lett, vol. 6, no. 7, pp. 1249-53, Apr 2 2015.
[8] Y. Zhang, G. Grancini, Y. Feng, A. M. Asiri, and M. K. Nazeeruddin, "Optimization of Stable Quasi-Cubic FAxMA1–xPbI3 Perovskite Structure for Solar Cells with Efficiency beyond 20%," ACS Energy Letters, vol. 2, no. 4, pp. 802-806, 2017.
[9] J. Chen, J. Xu, L. Xiao, B. Zhang, S. Dai, and J. Yao, "Mixed-Organic-Cation (FA)x(MA)1-xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process," ACS Appl Mater Interfaces, vol. 9, no. 3, pp. 2449-2458, Jan 25 2017.
[10] F. Ji et al., "A balanced cation exchange reaction toward highly uniform and pure phase FA1−xMAxPbI3 perovskite films," Journal of Materials Chemistry A, vol. 4, no. 37, pp. 14437-14443, 2016.
[11] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, and N.-G. Park, "Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell," Advanced Energy Materials, vol. 5, no. 20, p. 1501310, 2015.
[12] D. P. McMeekin et al., "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells," Science, vol. 351, no. 6269, p. 151, 2016.
[13] Y. Yu et al., "Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives," ChemSusChem, vol. 9, no. 23, pp. 3288-3297, 2016/12/08 2016.
[14] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, no. 3, p. 982, 2014.
[15] R. J. Sutton et al., "Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells," Advanced Energy Materials, vol. 6, no. 8, p. 1502458, 2016.
[16] S. D. Stranks and H. J. Snaith, "Metal-halide perovskites for photovoltaic and light-emitting devices," Nat Nanotechnol, vol. 10, no. 5, pp. 391-402, May 2015.
[17] J. Choi et al., "Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius," ACS Appl Mater Interfaces, vol. 9, no. 36, pp. 30764-30771, Sep 13 2017.
[18] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009/05/06 2009.
[19] M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, "ABX3 Perovskites for Tandem Solar Cells," Joule, vol. 1, no. 4, pp. 769-793, 2017.
[20] F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, "Efficiency limits for single-junction and tandem solar cells," Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 2952-2959, 2006.
[21] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells," Nano Lett, vol. 13, no. 4, pp. 1764-9, Apr 10 2013.
[22] A. Sadhanala et al., "Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications," Nano Lett, vol. 15, no. 9, pp. 6095-101, Sep 9 2015.
[23] Y. Huai, Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects. 2008.
[24] H. Hayat, K. Kohary, and C. D. Wright, "Can conventional phase-change memory devices be scaled down to single-nanometre dimensions?," Nanotechnology, vol. 28, no. 3, p. 035202, Jan 20 2017.
[25] G. Muller, N. Nagel, C. Pinnow, and T. Rohr, "Emerging non-volatile memory technologies," in ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705), 2003, pp. 37-44.
[26] T. W. Hickmott, "Low‐Frequency Negative Resistance in Thin Anodic Oxide Films," Journal of Applied Physics, vol. 33, no. 9, pp. 2669-2682, 1962.
[27] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance," Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[28] B. Hwang, C. Gu, D. Lee, and J. S. Lee, "Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory," Sci Rep, vol. 7, p. 43794, Mar 8 2017.
[29] E. Yoo, M. Lyu, J.-H. Yun, C. Kang, Y. Choi, and L. Wang, "Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure," Journal of Materials Chemistry C, vol. 4, no. 33, pp. 7824-7830, 2016.
[30] W. Lu, D. S. Jeong, M. Kozicki, and R. Waser, "Electrochemical metallization cells—blending nanoionics into nanoelectronics?," MRS Bulletin, vol. 37, no. 2, pp. 124-130, 2012.
[31] R. Waser, "Redox-Based Resistive Switching Memories," Journal of Nanoscience and Nanotechnology, vol. 12, no. 10, pp. 7628-7640, 2012.
[32] X. Wu et al., "Intrinsic nanofilamentation in resistive switching," Journal of Applied Physics, vol. 113, no. 11, p. 114503, 2013.
[33] E. H. Rhoderick, "Metal-semiconductor contacts," IEE Proceedings I - Solid-State and Electron Devices, vol. 129, no. 1, p. 1, 1982.
[34] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, no. 2, pp. 151-156, 1970/02/01 1970.
[35] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, no. 3, pp. 586-613, 2015.
[36] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014.
[37] J. Dai et al., "Carrier Decay Properties of Mixed Cation Formamidinium-Methylammonium Lead Iodide Perovskite [HC(NH2)2]1-x[CH3NH3]xPbI3 Nanorods," J Phys Chem Lett, vol. 7, no. 24, pp. 5036-5043, Dec 15 2016.
[38] W. Nie et al., "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, vol. 347, no. 6221, p. 522, 2015.
[39] M. Salado, L. Calio, R. Berger, S. Kazim, and S. Ahmad, "Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells," Phys Chem Chem Phys, vol. 18, no. 39, pp. 27148-27157, Oct 5 2016.
[40] Z. Xu, Z. Liu, Y. Huang, G. Zheng, Q. Chen, and H. Zhou, "To probe the performance of perovskite memory devices: defects property and hysteresis," Journal of Materials Chemistry C, vol. 5, no. 23, pp. 5810-5817, 2017.
[41] H. Choi et al., "Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells," Nano Energy, vol. 7, pp. 80-85, 2014.
[42] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, "Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys," Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2015.
[43] M. Saliba et al., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency," Energy Environ Sci, vol. 9, no. 6, pp. 1989-1997, Jun 8 2016.
[44] W. Zhao, Z. Yao, F. Yu, D. Yang, and S. F. Liu, "Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells," Adv Sci (Weinh), vol. 5, no. 2, p. 1700131, Feb 2018.
[45] Q. Jiang et al., "Surface passivation of perovskite film for efficient solar cells," Nature Photonics, 2019.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw