進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201914063600
論文名稱(中文) 錳含量與冷卻速率對低碳鋼中橫向裂紋之影響
論文名稱(英文) Effect of Manganese Content and Cooling Rate on Transverse Crack in Low Carbon Steel
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 蔡宗憲
研究生(英文) Tsung-Hsien Tsai
學號 N56061501
學位類別 碩士
語文別 中文
論文頁數 141頁
口試委員 指導教授-郭瑞昭
口試委員-陳引幹
口試委員-敖仲寧
口試委員-潘永村
中文關鍵字 橫向裂紋  低碳鋼  初析肥粒鐵  數位影像相關係數法 
英文關鍵字 transverse crack  low carbon steel  proeutectoid ferrite  DIC 
學科別分類
中文摘要 低碳鋼中橫向裂紋仍然為連續鑄造中常見的問題,過去有文獻提出藉由改善鑄胚表面微觀結構來抑制橫向裂紋形成的問題,然而於次表面(約2至15 ℃mm)仍然發現有橫向裂紋的存在,故了解高溫時鑄胚微觀結構並搭配機械性質測試可幫助我們了解橫向裂紋形成之機理。
本研究首先取樣含有橫向裂紋之SM570鑄胚,觀察裂紋附近之金相組織與裂紋斷裂面之表面結構,待觀察完鑄胚橫向裂紋後再針對不同錳含量(0.67、1.39與1.98 wt%)做沃斯田鐵化,再藉由冷卻速率(0.01、0.05、0.09、3 ℃/s)冷卻至Ar3溫度下水淬以保持高溫時肥粒鐵之微觀結構,並使用三點彎曲搭配數位影像相關係數法來分析應變分布,再比對拉伸表面形成之裂紋與其原始金相結構做比較。
結果顯示橫向裂紋沿沃斯田鐵晶界上之初析肥粒鐵生長,斷裂面可觀察到脆性斷裂與延性凹坑面共存之斷裂面。錳含量與冷卻速率影響肥粒鐵厚度,並藉由擴散控制成長來解釋該現象。三點彎曲結果顯示裂紋形成於肥粒鐵上,同時統計其原始肥粒鐵厚度介於5至15µm之間。
英文摘要 Transverse crack, which perpendicular to the direction of continuous casting, is a main problem in straightening. Although the problem of the transverse crack formation is suppressed by tailoring the microstructure on the slab surface, the transverse cracks having the length of 2 to 15 mm are still found on the subsurface. Thus, this study was separated into two parts. Firstly, the transverse cracks were characterized in low carbon steel of SM570 in order to understand the transverse cracks. Secondly, three steels having Mn content of 0.67, 1.39 and 1.98 wt% which had different chemical composition from SM570 were employed to know the effect of Mn addition on the formation of transverse cracks. In addition, the cooling rates of 0.01, 0.05, 0.09 and 3 ℃/s were investigated after heat treatment to understand the effect of the cooling rate on the formation of transverse cracks. Then, OM and SEM were used to analyze the morphology and microstructure. Dilatometer and three-point bending together with digital image correlation (DIC) technique were applied to measure the Ar3 temperature and the mechanical property, respectively.
In the first part, it was observed that transverse cracks occur and grow along ferrite formed on the boundaries of austenite, and the fracture mode was composed of brittle and ductile fracture. In the second part, increase in manganese content from 0.67 to 1.98 wt% leads to increasing the fraction of ferrite film forming on the boundaries of austenite from 6.4 to 24.3 % and to reducing the thickness of ferrite from 22.7 to 13.0 µm at a cooling rate of 0.05 ℃/s. At manganese content of 1.39wt% the increasing cooling rate from 0.01 to 3 ℃/s results in increasing the fraction of ferrite film forming on the boundaries of austenite from 14.4 to 36.1 % and to reducing the thickness of ferrite from 18.9 to 11.4 µm.
論文目次 摘要 I
Extended Abstract II
誌謝 XII
目錄 XIV
表目錄 XVII
圖目錄 XIX
第一章 前言 1
第二章 文獻回顧 3
2.1橫向裂紋之形成 3
2.2鋼鐵中顯微組織變化 11
2.2.1鐵碳相圖與顯微結構 11
2.2.2鋼鐵之連續冷卻相變態 14
2.2.3肥粒鐵的擴散控制成長 17
2.3數位影像相關係數法 23
第三章 實驗方法 28
3.1實驗材料 28
3.1.1合金成分設計 28
3.1.2試片取樣與製備 29
3.2裂紋型態分析 33
3.2.1裂紋之表面分析 33
3.2.2裂紋之斷裂面分析 38
3.3肥粒鐵相變態溫度之量測 39
3.4錳含量與冷卻速率對初析肥粒鐵形貌之影響 41
3.4.1製備初析肥粒鐵與試片命名 41
3.4.2初析肥粒鐵形貌分析 44
3.5初析肥粒鐵形貌對機械性質之影響 50
3.5.1試片製備 50
3.5.2機械性質分析 51
第四章 實驗結果 57
4.1裂紋型態分析 57
4.1.1裂紋表面分析 57
4.1.2裂紋斷裂面分析 70
4.2肥粒鐵相變態溫度 72
4.3錳含量與冷卻速率對初析肥粒鐵形貌之影響 80
4.3.1製備初析肥粒鐵 80
4.3.2初析肥粒鐵形貌分析 86
4.4初析肥粒鐵形貌對機械性質之影響 102
第五章 討論 122
5.1錳含量對初析肥粒鐵厚度之影響 122
5.2冷卻速率對初析肥粒鐵厚度之影響 125
5.3初析肥粒鐵厚度對裂紋形成之影響 127
第六章 結論 136
參考文獻 137
參考文獻 [1] S. Junghans, Apparatus for Continuous Casting Processes, 1938, United States Patent Office, Serial No.184752.
[2] Y. F. Li, G. H. Wen, T. A. Ping, J. Q. Li, and C.L. Xiang, Effect of slab subsurface microstructure evolution on transverse cracking of microalloyed steel during continuous casting, 2014, Journal of Iron and Steel Research, International, 21(8), 737-744.
[3] Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi, and Y. Ohmori, Surface cracking mechanism of continuously cast low carbon low alloy steel slabs, 1990, Materials Science and Technology, 6(9), 793-806.
[4] B. Mintz, and J. M. Arrowsmith, Hot-ductility behaviour of C–Mn–Nb–Al steels and its relationship to crack propagation during the straightening of continuously cast strand, 1979, Metals technology, 6(1), 24-32.
[5] H. G. Suzuki, S. Nishimura, J. Imamura, and Y. Nakamura, Embrittlement of steels occurring in the temperature range from 1000 to 600℃, 1984, Transactions of the Iron and Steel Institute of Japan, 24(3), 169-177.
[6] E. Takeuchi, and J. K. Brimacombe, Effect of oscillation-mark formation on the surface quality of continuously cast steel slabs, 1985, Metallurgical Transactions B, 16(3), 605-625.
[7] B. Mintz, S. Yue, and J. J. Jonas, Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting, 1991, International Materials Reviews, 36(1), 187-220.
[8] N. Pradhan, N. Banerjee, B. B. Reddy, S. K. Sahay, C. S. Viswanathan, P. K. Bhor, and S. Mazumdar, Control of transverse cracking in special quality slabs, 2001, Ironmaking & steelmaking, 28(4), 305-311.
[9] B. Mintz, and D. N. Crowther, Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting, 2010, International Materials Reviews, 55(3), 168-196.
[10] Y. Ohmori, and Y. Maehara, Precipitation of NbC and hot ductility of austenitic stainless steels, 1984, Transactions of the Japan institute of metals, 25(3), 160-167.
[11] R. Abushosha, S. Ayyad, and B. Mintz, Influence of cooling rate on hot ductility of C-Mn-AI and C-Mn-Nb-Al steels, 1998, Materials science and technology, 14(4), 346-351.
[12] T. Kato, Y. Ito, M. Kawamoto, A. Yamanaka, and T. Watanabe, Prevention of slab surface transverse cracking by microstructure control, 2003, ISIJ international, 43(11), 1742-1750.
[13] N. Baba, K. Ohta, Y. Ito, and T. Kato, Prevention of slab surface transverse cracking at Kashima n° 2 caster with Surface Structure Control (SSC) cooling, 2006, Revue de Métallurgie–International Journal of Metallurgy, 103(4), 174-179.
[14] L. J. Xu, S. L. Zhang, C. G. Qiu, S. T. Qiu, and X. Z. Zhang, Surface microstructure control of microalloyed steel during slab casting, 2017, Journal of Iron and Steel Research International, 24(8), 803-810.
[15] J. K. Brimacombe, and K. Sorimachi, Crack formation in the continuous casting of steel, 1977, Metallurgical transactions B, 8(2), 489-505.
[16] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering(8th ed), 2011, John Wiley & Sons, USA: New York, 319-330.
[17] T. Kasugai, and M. Inagaki, Effect of Mn on transformation behaviors of synthetic weld heat-affected zone, 1980, Transactions of National Research Institute for Metals, 22(4), 258-269.
[18] H. K. Bhadeshia, Diffusional formation of ferrite in iron and its alloys, 1985, Progress in Materials Science, 29(4), 321-386.
[19] J. W. Christian, Theory of Transformations in Metals and Alloys, 1975, Part1, 2nd Edition, PergamonPress, Oxford, 126-148.
[20] R. E. Reed-Hill, R. Abbaschian, and R. Abbaschian, Physical metallurgy principles(4th ed), 2010, Cengage Learning, 481-488.
[21] C. Atkinson, Concentration dependence of D in the growth or dissolution of precipitates, 1967, Acta Metallurgica, 15(7), 1207-1211.
[22] J. R. Bradley, and H. I. Aaronson, Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C-X alloys, 1981, Metallurgical transactions A, 12(10), 1729-1741.
[23] K. R. Kinsman, and H. I. Aaronson, Influence of Al, Co, and Si upon the kinetics of the proeutectoid ferrite reaction, 1973, Metallurgical transactions, 4(4), 959-967.
[24] K. R. Kinsman, E. Eichen, and H. I. Aaronson, Thickening kinetics of proeutectoid ferrite plates in Fe-C alloys, 1975, Metallurgical Transactions A, 6(2), 303-317.
[25] J. R. Bradley, J. M. Rigsbee, and H. I. Aaronson, Growth kinetics of grain boundary ferrite allotriomorphs in Fe−C alloys, 1977, Metallurgical Transactions A, 8(2), 323-333.
[26] M. Enomoto, and H. I. Aaronson, Partition of Mn during the growth of proeutectoid ferrite allotriomorphs in an Fe-1.6 at. pct C-2.8 at. pct Mn alloy, 1987, Metallurgical Transactions A, 18(9), 1547-1557.
[27] P. D. Hodgson, M. R. Hickson, and R. K. Gibbs, The production and mechanical properties of ultrafine ferrite, 1998, Materials Science Forum, 284, 63-72.
[28] B. Hutchinson, D. Lindell, and M. Barnett, Yielding behaviour of martensite in steel, 2015, ISIJ International, 55(5), 1114-1122.
[29] W. H. Peters, and W. F. Ranson, Digital imaging techniques in experimental stress analysis, 1982, Optical engineering, 21(3), 427-431.
[30] J. C. Kuo, D. Chen, S. H. Tung, and M. H. Shih, Prediction of the orientation spread in an aluminum bicrystal during plane strain compression using a DIC-based Taylor model, 2008, Computational Materials Science, 42(4), 564-569.
[31] S. H. Tung, M. H. Shih, and J. C. Kuo, Application of digital image correlation for anisotropic plastic deformation during tension testing, 2010, Optics and Lasers in Engineering, 48(5), 636-641.
[32] J. C. Kuo, S. H. Tung, M. H. Shih, and Y. Y. Lu, Characterisation of Indentation‐Induced Pattern Using Full‐Field Strain Measurement, 2010 Strain, 46(3), 277-282.
[33] J .C. Kuo, D. Chen, S. H. Tung, and M. H. Shih, Misorientation behavior of an aluminum bicrystal with 15.7 symmetric tilt boundary using simple shear, 2007, Journal of materials science, 42(18), 7673-7677.
[34] T. C. Chu, W. F. Ranson, and M. A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics, 1985, Experimental mechanics, 25(3), 232-244.
[35] G. T. Eldis, A Critical Review of Data Sources for Isothermal Transformation and Continuous Cooling Transformation Diagrams, 1977, Hardenability Concepts with Applications to Steel, 126-157.
[36] B. Mintz, J. R. Banerjee, and K. M. Banks, Regression equation for Ar3 temperature for coarse grained as cast steels. 2011, Ironmaking & Steelmaking, 38(3), 197-203.
[37] S. H. Tung, J. C Kuo, and M. H. Shih, Strain distribution analysis using Digital-Image-Correlation techniques, 2005, Proceedings the Eighteenth KKCNN Symposium on Civil Engineering, Taiwan.
[38] K. Lücke, K. Detert A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, 1957, Acta Metallurgica, 5(11), 628-637.
[39] M. Enomoto, Influence of solute drag on the growth of proeutectoid ferrite in Fe–C–Mn alloy, 1999, Acta materialia, 47(13), 3533-3540.
[40] C. Atkinson, H.B. Aaron, K.R. Kinsman, K. R., and H. I. Aaronson, On the growth kinetics of grain boundary ferrite allotriomorphs, 1973, Metallurgical Transactions, 4(3), 783-792.
[41] C. Poletti, J. Six, M. Hochegger, H. P. Degischer, and S. Ilie, Hot deformation behaviour of low alloy steel, 2011, Steel research international, 82(6), 710-718.
[42] H. Groβheim, K. Schotten, and W. Bleck, Physical simulation of hot rolling in the ferrite range of steels, 1996, Journal of Materials Processing Technology, 60(1-4), 609-614.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw