進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201910372400
論文名稱(中文) 純化奈米碳管混摻導電高分子以建構高功率因子之熱電薄膜
論文名稱(英文) The Study of Thermoelectric Thin Film with High Power Factor Based on Purified CNTs/Conductive Polymer Blends
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳凱渝
研究生(英文) Kai-Yu Chen
學號 N56061161
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 口試委員-齊孝定
口試委員-劉全璞
口試委員-王正全
指導教授-陳嘉勻
中文關鍵字 熱電  導電高分子  奈米碳管 
英文關鍵字 Thermoelectric  Conductive polymer  Carbon nanotubes 
學科別分類
中文摘要 熱電材料是一種有效將熱能轉換成電能的能源擷取方式,然而,在現今熱電領域的發展尚未完全成熟,提高熱電能量轉換效率及功率因子仍需要大量技術和人力的投入。本研究主要是探討在低溫環境下,利用富有良好熱電性質的導電高分子PEDOT:PSS為主體,透過摻雜不同重量百分比經純化處理後的奈米碳管形成奈米複合結構薄膜,建構出熱電性質最佳化的設計。透過純化奈米碳管的摻雜能將熱電薄膜的載子濃度和飄移速度分別提升至1.19E20 (cm-3)、311.3 (cm2/Vs),進而讓導電率達到5929 S/cm,奈米複合結構薄膜運用能量過濾效應的特性使席貝克係數能在導電率顯著提昇的情況下維持在40-50 μVK-1,相較於只含PEDOT:PSS的薄膜,成功將熱電材料衡量效率的指標:功率因子( PF = σ2S )增加近200倍左右,達到1233 μWm-1K-2。本研究使用標準I-V量測方式及數據處理計算出溫差轉換電力的輸出功率,並以公式證明,熱電輸出功率與功率因子相比對下,可先行判斷薄膜熱電性質的優劣。另一方面,我們運用各種分析儀器深入了解PEDOT:PSS和奈米碳管混摻後結構演變的機制,詳細探討導電率和功率因子大幅上升的原因。本研究也試圖對薄膜進行磁場、電場的施加,控制奈米碳管於導電高分子基質中的排列及分散程度,其中經過薄膜施加交流電壓25V、2hr的處理,熱電輸出功率可由14.34 nW提高至20.17 nW、席貝克係數增加至50.2 μVK-1,說明奈米碳管越分散時,可使導電高分子與碳管接觸的接面增加,讓能量過濾效應的影響更為顯著,並提升席貝克係數。除此之外,本研究更於矽基板上使用金屬輔助化學蝕刻法建立一維結構的矽奈米線,發現薄膜的熱電輸出功率大幅上升至47.77 nW、席貝克係數也提升至63.2 μVK-1,初步推測是由各奈米結構中的接面,可使能量過濾效應的影響更加顯著,進一步提升熱電性質。
英文摘要 Applications of thermoelectric devices reveal that harvesting wasted heat and solar thermal energy into electricity have been anticipated to be renewable energy sources. In this study, the hybrid nanocomposites film is prepared that enable to convert the thermal heat into applicable electrical energy. PEDOT:PSS, known as exhibiting remarkable thermoelectric organic material, had been employed further by introducing the highly conductive carbon nanotubes as the fillers, which largely improve electrical conductivity (up to 5929 S/cm) without sacrificing Seebeck coefficient via nanoscale junction, which is also believed to play an important role in filtering low energy electrons (Energy filtering effect), resulting in large power factor, 1233 μWm-1K-2 at room temperature. The mechanism of CNTs/PEDOT:PSS blends are also observed by analysis instruments, explaining the reason how thermoelectric properties of conductive polymer film can be successfully improved by adding CNTs. In addition, applying electric and magnetic field to the nanocomposite film are further investigated, revealing that thermal output power based on simple equipped I-V measurement could be amplified from 14.34 nW to 20.17 nW. Furthermore, we propose an idea that the optimized nanocomposite film is deposited on the one-dimensional silicon nanowire substrate established by metal-assisted chemical etching. It is found that the output power and Seebeck coefficient are remarkably increased to 47.77 nW and 63.2 μVK-1 due to significant energy filtering effect created by energy barrier between nanoscale junction.
論文目次 摘要 I
Extended Abstract II
誌謝 XI
目錄 XII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1 熱電效應的原理 3
2.1.1 席貝克效應( Seebeck effect ) 3
2.1.2 帕爾帖效應( Peltier effect ) 5
2.1.3 湯姆森效應( Thomson effect ) 6
2.1.4 熱電優值 (Thermoelectric figure of merit, ZT) 7
2.2 無機熱電材料 9
2.2.1 塊材( Bulk ) 9
2.2.2 二維結構( 2 Dimension structure) 10
2.2.3 一維結構( 1 Dimension structure) 11
2.3 有機熱電材料 13
2.3.1 有機熱電材料 ( Organic thermoelectric materials ) 13
2.3.2 PEDOT:PSS 14
2.4 高分子奈米複合結構 16
2.4.1 高分子-無機材料複合結構 (Polymer-inorganic nanocomposites) 16
2.4.2 高分子-奈米碳管複合結構 (Polymer-carbon nanotube nanocomposites) 18
第三章 儀器設備與實驗流程 20
3.1 研究流程圖 20
3.2 實驗藥品與材料 21
3.3 實驗儀器 22
3.3.1 精密天平 (Precision Balances) 22
3.3.2 數位型電磁加熱攪拌機 (Heating Panel) 22
3.3.3 旋轉塗佈機 (Spin Coater) 22
3.3.4 超音波震盪機 (Ultrasonic Cleaner) 22
3.4 實驗步驟與量測方法 23
3.4.1 矽基板的製備 23
3.4.2 酸處理奈米碳管的製備 23
3.4.3 奈米碳管及導電高分子溶液的製備 23
3.4.4 熱電薄膜測量試片的製備 26
3.4.5 熱電性質量測 26
3.4.6 席貝克係數量測原理 28
3.4.7 熱電薄膜施加磁場試片的製備 30
3.4.8 熱電薄膜施加電場試片的製備 31
3.5 材料分析儀器 32
3.5.1 霍爾效應分析儀 (Hall Effect Analyzer) 32
3.5.2 X光薄膜繞射儀 (X-ray Diffractometer) 32
3.5.3 高解析場發射掃描式電子顯微鏡及能量散佈光譜儀 (High Resolution Scanning Electron Microscope & Energy Dispersive Spectrometer, HR-SEM & EDS) 33
3.5.4 拉曼光譜分析儀 (Raman Spectrometer) 34
3.5.5 傅立葉轉換紅外線光譜儀(Fourier-transform IR spectroscopy) 35
3.5.6 電壓電流量測系統 (I-V Measurement System) 36
3.5.7 席貝克係數量測機台(Seebeck coefficient Measurement System) 36
第四章 結果與討論 37
4.1 複合結構薄膜分析 37
4.1.1 表面形貌分析 37
4.1.2 奈米碳管與薄膜之XRD分析 40
4.2 薄膜熱電性質量測 42
4.2.1 電性量測與霍爾效應分析 42
4.2.2 席貝克係數量測分析 44
4.2.3 功率因子(Power Factor)分析 48
4.2.4 I-V曲線及熱電輸出功率(Thermoelectric Output Power)分析 52
4.2.5 輸出功率(Output Power)與功率因子(Power Factor) 61
4.3 薄膜結構演變分析 64
4.3.1 導電高分子(PEDOT:PSS)結構分析 64
4.3.2 傅立葉轉換紅外線光譜分析 66
4.3.3 拉曼光譜分析 68
4.3.4 導電高分子纏繞奈米碳管機制 72
4.4 熱電薄膜施加磁場 74
4.4.1 表面形貌分析 74
4.4.2 I-V曲線及輸出功率 75
4.4.3 席貝克係數分析及討論 76
4.5 熱電薄膜施加電場 77
4.5.1 表面形貌分析 77
4.5.2 I-V曲線及輸出功率 79
4.5.3 席貝克係數分析及討論 81
4.6 矽基板奈米結構化 82
4.6.1 矽奈米結構的建立 82
4.6.2 I-V曲線、輸出功率與席貝克係數 83
第五章 結論 84
第六章 未來展望 85
參考文獻 86
參考文獻 [1] D. Kraemer et al., "High-performance flat-panel solar thermoelectric generators with high thermal concentration," Nature materials, vol. 10, no. 7, p. 532, 2011.
[2] D. M. Rowe, CRC handbook of thermoelectrics. CRC press, 1995.
[3] L. B. Kong, T. Li, H. H. Hng, F. Boey, T. Zhang, and S. Li, "Waste Thermal Energy Harvesting (I): Thermoelectric Effect," in Waste Energy Harvesting (Lecture Notes in Energy, 2014, pp. 263-403.
[4] K. Biswas et al., "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, vol. 489, no. 7416, p. 414, 2012.
[5] M. Hamid Elsheikh et al., "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, vol. 30, pp. 337-355, 2014.
[6] A. I. Hochbaum et al., "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, no. 7175, pp. 163-7, Jan 10 2008.
[7] J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, "When thermoelectrics reached the nanoscale," Nature nanotechnology, vol. 8, no. 7, p. 471, 2013.
[8] L. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, no. 19, p. 12727, 1993.
[9] L. Hicks, T. Harman, X. Sun, and M. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 53, no. 16, p. R10493, 1996.
[10] E. S. Rama Venkatasubramanian, Thomas Colpitts & Brooks O'Quinn "Thin film thermoelectric devices with high room-temperature figures of merit," Nature, 2001.
[11] M. S. Dresselhaus et al., "New Directions for Low-Dimensional Thermoelectric Materials," Advanced Materials, vol. 19, no. 8, pp. 1043-1053, 2007.
[12] T. Harman, P. Taylor, M. Walsh, and B. LaForge, "Quantum dot superlattice thermoelectric materials and devices," science, vol. 297, no. 5590, pp. 2229-2232, 2002.
[13] T. Harman, M. Walsh, and G. Turner, "Nanostructured thermoelectric materials," Journal of electronic materials, vol. 34, no. 5, pp. L19-L22, 2005.
[14] R. Yang, G. Chen, and M. S. Dresselhaus, "Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction," Physical Review B, vol. 72, no. 12, p. 125418, 2005.
[15] Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, "Recent progress on PEDOT-based thermoelectric materials," Materials, vol. 8, no. 2, pp. 732-750, 2015.
[16] Z. Han and A. Fina, "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review," Progress in polymer science, vol. 36, no. 7, pp. 914-944, 2011.
[17] M. He, F. Qiu, and Z. Lin, "Towards high-performance polymer-based thermoelectric materials," Energy & Environmental Science, vol. 6, no. 5, pp. 1352-1361, 2013.
[18] Y. Xuan et al., "Thermoelectric properties of conducting polymers: The case of poly (3-hexylthiophene)," Physical Review B, vol. 82, no. 11, p. 115454, 2010.
[19] H. Kaneko, T. Ishiguro, A. Takahashi, and J. Tsukamoto, "Magnetoresistance and thermoelectric power studies of metal-nonmetal transition in iodine-doped polyacetylene," Synthetic metals, vol. 57, no. 2-3, pp. 4900-4905, 1993.
[20] N. Dubey and M. Leclerc, "Conducting polymers: efficient thermoelectric materials," Journal of Polymer Science Part B: Polymer Physics, vol. 49, no. 7, pp. 467-475, 2011.
[21] J. Wu, Y. Sun, W. Xu, and Q. Zhang, "Investigating thermoelectric properties of doped polyaniline nanowires," Synthetic Metals, vol. 189, pp. 177-182, 2014.
[22] M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes," Advanced functional materials, vol. 22, no. 2, pp. 421-428, 2012.
[23] H. Yan, T. Jo, and H. Okuzaki, "Potential application of highly conductive and transparent poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) thin films to touch screen as a replacement for indium tin oxide electrode," Polymer journal, vol. 43, no. 7, p. 662, 2011.
[24] G.-F. Wang, X.-M. Tao, and R.-X. Wang, "Fabrication and characterization of OLEDs using PEDOT: PSS and MWCNT nanocomposites," Composites Science and Technology, vol. 68, no. 14, pp. 2837-2841, 2008.
[25] S. H. Eom et al., "Polymer solar cells based on inkjet-printed PEDOT: PSS layer," Organic Electronics, vol. 10, no. 3, pp. 536-542, 2009.
[26] Y. Park et al., "Flexible, light trapping substrates for organic photovoltaics," Applied Physics Letters, vol. 109, no. 9, p. 093301, 2016.
[27] F.-X. Jiang, J.-K. Xu, B.-Y. Lu, Y. Xie, R.-J. Huang, and L.-F. Li, "CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Thermoelectric Performance of Poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate)," Chinese Physics Letters, vol. 25, pp. 2202-2205, 2008.
[28] Q. Wei, M. Mukaida, Y. Naitoh, and T. Ishida, "Morphological change and mobility enhancement in PEDOT: PSS by adding co‐solvents," Advanced materials, vol. 25, no. 20, pp. 2831-2836, 2013.
[29] M. Scholdt et al., "Organic semiconductors for thermoelectric applications," Journal of electronic materials, vol. 39, no. 9, pp. 1589-1592, 2010.
[30] C. Liu et al., "Highly conducting free-standing poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) films with improved thermoelectric performances," Synthetic Metals, vol. 160, no. 23-24, pp. 2481-2485, 2010.
[31] G.-H. Kim, L. Shao, K. Zhang, and K. P. Pipe, "Engineered doping of organic semiconductors for enhanced thermoelectric efficiency," Nature materials, vol. 12, no. 8, p. 719, 2013.
[32] K. C. See, J. P. Feser, C. E. Chen, A. Majumdar, J. J. Urban, and R. A. Segalman, "Water-processable polymer− nanocrystal hybrids for thermoelectrics," Nano letters, vol. 10, no. 11, pp. 4664-4667, 2010.
[33] M. He et al., "Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface," Energy & Environmental Science, vol. 5, no. 8, pp. 8351-8358, 2012.
[34] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, no. 6348, p. 56, 1991.
[35] C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, "Thermoelectric behavior of segregated-network polymer nanocomposites," Nano letters, vol. 8, no. 12, pp. 4428-4432, 2008.
[36] C. Meng, C. Liu, and S. Fan, "A promising approach to enhanced thermoelectric properties using carbon nanotube networks," Advanced materials, vol. 22, no. 4, pp. 535-539, 2010.
[37] Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, "Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites," Acs Nano, vol. 4, no. 4, pp. 2445-2451, 2010.
[38] C.-J. Yao, H.-L. Zhang, and Q. Zhang, "Recent progress in thermoelectric materials based on conjugated polymers," Polymers, vol. 11, no. 1, p. 107, 2019.
[39] S. P. Thompson, Dynamo-electric machinery: a manual for students of electrotechnics. American technical book Company, 1901.
[40] B. Fan, X. Mei, and J. Ouyang, "Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films by adding anionic surfactants into polymer solution," Macromolecules, vol. 41, no. 16, pp. 5971-5973, 2008.
[41] H. S. Dehsari, E. K. Shalamzari, J. N. Gavgani, F. A. Taromi, and S. Ghanbary, "Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices," RSC Advances, vol. 4, no. 98, pp. 55067-55076, 2014.
[42] C. L. Ngo, Q. T. Le, T. T. Ngo, D. N. Nguyen, and M. T. Vu, "Surface modification and functionalization of carbon nanotube with some organic compounds," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 4, no. 3, p. 035017, 2013.
[43] M. Wongaree, S. Chiarakorn, and S. Chuangchote, "Photocatalytic improvement under visible light in TiO 2 nanoparticles by carbon nanotube incorporation," Journal of Nanomaterials, vol. 16, no. 1, p. 295, 2015.
[44] Y. Yesi, I. Shown, A. Ganguly, T. T. Ngo, L. C. Chen, and K. H. Chen, "Directly‐grown hierarchical carbon nanotube@ polypyrrole core–shell hybrid for high‐performance flexible supercapacitors," ChemSusChem, vol. 9, no. 4, pp. 370-378, 2016.
[45] N. A. A. Talib, F. Salam, N. A. Yusof, S. A. A. Ahmad, and Y. Sulaiman, "Optimization of peak current of poly (3, 4-ethylenedioxythiophene)/multi-walled carbon nanotube using response surface methodology/central composite design," RSC Advances, vol. 7, no. 18, pp. 11101-11110, 2017.
[46] S. Funda et al., "Correlation between the fine structure of spin-coated PEDOT: PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells," Journal of Applied Physics, vol. 120, no. 3, p. 033103, 2016.
[47] J.-T. Lee, S.-H. Choi, and J.-Y. Kim, "Electrical conductivity of poly (3, 4-ethylenedioxythiophene): p-toluene sulfonate films hybridized with reduced graphene oxide," Nanoscale research letters, vol. 9, no. 1, p. 644, 2014.
[48] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, "On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment," Polymer, vol. 45, no. 25, pp. 8443-8450, 2004.
[49] T.-R. Chou, S.-H. Chen, Y.-T. Chiang, Y.-T. Lin, and C.-Y. Chao, "Highly conductive PEDOT: PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display," Journal of Materials Chemistry C, vol. 3, no. 15, pp. 3760-3766, 2015.
[50] X. Wu et al., "Highly conductive and uniform graphene oxide modified PEDOT: PSS electrodes for ITO-Free organic light emitting diodes," Journal of Materials Chemistry C, vol. 2, no. 20, pp. 4044-4050, 2014.
[51] S. K. Bux et al., "Nanostructured bulk silicon as an effective thermoelectric material," Advanced Functional Materials, vol. 19, no. 15, pp. 2445-2452, 2009.
[52] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard Iii, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, 2011, pp. 116-119.
[53] G. Mahan and J. O. Sofo, "The best thermoelectric," Proceedings of the National Academy of Sciences, vol. 93, no. 15, pp. 7436-7439, 1996.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw