進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201910311400
論文名稱(中文) P(VDF-TrFE)鐵電性板晶的融合及排列行為對功能性晶相分佈的影響
論文名稱(英文) Study on the growth of functional crystals guided by coalescence and stacking behaviors of P(VDF-TrFE) ferroelectric lamellar crystals
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 潘嘉宏
研究生(英文) Chia-Hung Pan
學號 N56061462
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-阮至正
口試委員-徐邦昱
口試委員-鄭弘隆
口試委員-李玉郎
中文關鍵字 P(VDF-TrFE)  板晶融合  板晶排列  不同相之間的交互作用 
英文關鍵字 P(VDF-TrFE)  coalescence  assembly  phase interactions 
學科別分類
中文摘要 Poly(vinylidenefluoride-co-trifluoroethylene)(P(VDF-TrFE))鏈段排列的晶相,可以具有極性以及壓電特性,是高分子晶相中少有的特質。本研究中探討薄膜中晶相的成長習性,並以混摻非結晶的絕緣高分子PMMA來侷限板晶的成長以及探索晶相(P(VDF-TrFE))與非晶相(PMMA)之間的相互影響。
居禮溫度以上板晶的二次結晶行為發現牽涉板晶的聚集與融合,為一新穎的板晶自組裝的機制。此外,PMMA非晶相造成的空間侷限效應,有助於大範圍板晶的聚集排列。形成的板晶陣列,於居禮溫度以上的持續成長中會逐漸造成PMMA區域的縮小與變形,使得PMMA區域沿著板晶排列方向延伸。而PMMA區域延伸,又造成周圍排列板晶的彎曲與參差的排列。
富勒烯衍生物PCBM([6,6]-phenyl-C61-butyric acid methyl ester), 傾向分佈於PMMA相所分佈的區域。PCBM晶相的成長,因受到周圍PMMA非晶相的擠壓,觀察到普遍沿著PMMA延伸方向成長。因PCBM晶相成長而被驅使往外圍擴散的PMMA分子,又進一步擠壓周遭板晶陣列,使得PMMA區域外的板晶扭曲。這一系列相的演變,板晶排列、以及不同相之間的交互作用,尚未被系統性的瞭解與觀察,卻是影響薄膜結構的關鍵因素。
英文摘要 The unique polarity of P(VDF-TrFE) crystalline phase below curie transition temperature is attributed to the lattice packing of all-trans molecular segments, which allocates most of substituted fluorine atoms on one side of molecular segments and hydrogen atoms on the other side.
In this study, the growth habits and stacking behavior of crystalline lamellae within thin films were explored. The coalescence of lamellar crystals has been identified to occur during the secondary crystallization above Curie temperature. It is viewed that, for the residue amorphous fractions in between lamellar crystals, the further crystallization above Curie temperature causes the assembly and coalescence of present lamellar crystal. With the presence of a limited fraction of amorphous poly(methyl methacrylate) (PMMA), the continuous coalescence and growth of lamellar crystals eventually result in regular stacking arrays. Furthermore, the shrinkage and deformation of the PMMA domains is observed as a result of continuous lamellae growth above the Curie temperature, and then the PMMA domains extends along the stacking direction of lamellar crystals.
The fullerene derivative of [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is observed to preferentially assemble into PMMA globular domains during solution casting. Due to the stress from deformed amorphous environment, the later induced crystal growth of PCBM is identified to be generally along the PMMA extension direction. The anisotropic deformation of PMMA amorphous domains is thus realized able to modify crystal growth within deformed domains.
The involved phase interactions is expected to yield fruitful influences on the evolution of thin-film structures for desired physical properties.
論文目次 中英文摘要……………………………………………………………….……………I
致謝………………………………………………………………………………...VIII
目錄……………………………………………………………………………….......X
表目錄………………………………………………………………………………XII
圖目錄……………………………………………………………………………...XIII
第一章 緒論…………………………………………………………………………..1
1-1前言與研究動機……………………………………………………………..........1
第二章 文獻回顧……………………………………………………………..............2
2-1 居禮相變(Curie transition) ……………………………………………….….......2
2-2 PVDF和共聚物PVDF-TrFE簡介……………………………………….……….3
2-2-1 PVDF和PVDF-TrFE的基本性質……………………………….………..3
2-2-2 共聚單體TrFE對P(VDF-TrFE)相變化的影響……………………….…6
2-2-3 居禮相轉變(Curie transition)對P(VDF-TrFE)結晶行為影響…………...8
2-3 高分子結晶的排列行為………………………………………………………...10
2-3-1 空間侷限效應…………………………………………………………...10
2-3-2 高分子磊晶成長……………………………..………………………….14
第三章 實驗材料與方法……………………………………………………………17
3-1實驗材料…………………………………………………………………………17
3-2實驗儀器………………………………………………………………………....19
3-3實驗步驟…………………………………………………………………………22
3-3-1 探討高分子板晶排列及分佈………………………………………….22
3-3-2 探討高分子板晶排列對PCBM晶相分佈及排列的影響…………….22
3-4實驗流程………………………………………………………………………....23
第四章 結果與討論…………………………………………………………………25
4-1 P(VDF-TrFE)的相變化行為…………………………………………………….25
4-2 混摻效應………………………………………………………………………...30
4-2-1 混摻對P(VDF-TrFE)相變化行為的影響……………………………....30
4-3板晶融合、成長對混摻系統中P(VDF-TrFE)板晶排列演變的………………33
4-3-1 緩慢升溫對P(VDF-TrFE)/PMMA混摻系統板晶排列演變探討……..33
4-3-2 P(VDF-TrFE)形成鐵電性板晶的有序陣列…………………………...47
4-4 P(VDF-TrFE)有序板晶排列對功能性晶相分佈排列的影響………………..48
4-4-1 高分子板晶融合及排列組裝行為對PCBM晶相分佈的影響………...48
第五章 結論…………………………………………………………………………57
第六章 參考文獻……………………………………………………………………58

參考文獻 [1] Speight, J. G. “Lange's Handbook of Chemistry” 16th Edition, Chapter 5, 1972.
[2] Coppens, P. “Electron Distributions and the Chemical Bond” Chapter 1.2, 1982
[3] Seitz, F., & Turnbull, D. “Solid state physics” 5, 136-368, 1957.
[4] Moss, G., & Coppens, P. “Space partitioning and the effects of molecular proximity on electrostatic moments of the crystalline formamide molecule.” Chemical Physics Letters, 75(2), 298-302, 1980.
[5] Kong L.B., Li T., Hng, H. H., Boey, F., Zhang T., & Li S. “Waste Energy Harvesting. Lecture Notes in Energy, Waste Mechanical Energy Harvesting (I): Piezoelectric Effect.” 24, 19-133, 2014.
[6] Hwang, H. J., Nagai, T., Ohji, T., Sando, M., Toriyama, M., & Niihara, K. “Curie temperature anomaly in lead zirconate titanate/silver composites.” Journal of the American Ceramic Society, 81(3), 709-712, 1998.
[7] Lopez-Dominguez, V., Hernàndez, J. M., Tejada, J., & Ziolo, R. F. “Colossal reduction in curie temperature due to finite-size effects in CoFe2O4 nanoparticles.” Chemistry of Materials, 25(1), 6-11, 2012.
[8] Legrand, J. F. “Structure and ferroelectric properties of P (VDF-TrFE) copolymers.” Ferroelectrics, 91(1), 303-317, 1989.
[9] Wan, C., & Bowen, C. R. “Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure.” Journal of Materials Chemistry A, 5(7), 3091-3128, 2017.
[10] Chan, H. L., Ng, P. K. L., & Choy, C. L. “Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites.” Applied Physics Letters, 74(20), 3029-3031, 1999.
[11] Kim, K. J., & Kim, G. B. “Curie transition, ferroelectric crystal structure and ferroelectricity of a VDF/TrFE (7525) copolymer: 2. The effect of poling on Curie transition and ferroelectric crystal structure.” Polymer, 38(19), 4881-4889, 1997.
[12] Nalwa, H. S. “Ferroelectric Polymers: Chemistry: Physics, and Applications.” CRC Press, 1995.
[13] Tashiro, K., Takano, K., Kobayashi, M., Chatani, Y., & Tadokoro, H. “Structure and ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 2. VDF 55% copolymer.” Polymer, 25(2), 195-208, 1984.
[14] Kim, K. J., Kim, G. B., Vanlencia, C. L., & Rabolt, J. F. “Curie transition, ferroelectric crystal structure, and ferroelectricity of a VDF/TrFE (75/25) copolymer 1. The effect of the consecutive annealing in the ferroelectric state on curie transition and ferroelectric crystal structure.” Journal of Polymer Science Part B: Polymer Physics, 32(15), 2435-2444, 1994.
[15] Choi, J., Borca, C. N., Dowben, P. A., Bune, A., Poulsen, M., Pebley, S., & Palto, S. P. “Phase transition in the surface structure in copolymer films of vinylidene fluoride (70%) with trifluoroethylene (30%).” Physical Review B, 61(8), 5760-5769, 2000.
[16] Tashiro, K., & Tanaka, R. “Structural correlation between crystal lattice and lamellar morphology in the ferroelectric phase transition of vinylidene fluoride–trifluoroethylene copolymers as revealed by the simultaneous measurements of wide-angle and small-angle X-ray scatterings.” Polymer, 47(15), 5433-5444, 2006.
[17] Lovinger, A. J., Furukawa, T., Davis, G. T., & Broadhurst, M. G. “Curie transitions in copolymers of vinylidene fluoride.” Ferroelectrics, 50(1-4), 553-562, 1983.
[18] Meereboer, N. L., Terzić, I., Mellema, H. H., Portale, G., & Loos, K. “Pronounced Surface Effects on the Curie Transition Temperature in Nanoconfined P (VDF-TrFE) Crystals.” Macromolecules, 52(4), 1567-1576, 2019.
[19] Yagi, T., Tatemoto, M., & Sako, J. I. “Transition behavior and dielectric properties in trifluoroethylene and vinylidene fluoride copolymers.” Polymer Journal, 12(4), 209-223, 1980.
[20] Gregorio Jr, R., & Botta, M. M. “Effect of crystallization temperature on the phase transitions of P (VDF/TrFE) copolymers.” Journal of Polymer Science Part B: Polymer Physics, 36(3), 403-414, 1998.
[21] Bargain, F., Panine, P., Dos Santos, F. D., & Tence-Girault, S. “From solvent-cast to annealed and poled poly (VDF-co-TrFE) films: New insights on the defective ferroelectric phase.” Polymer, 105, 144-156, 2016.
[22] Tashiro, K., Takano, K., Kobayashi, M., Chatani, Y., & Tadokoro, H. “Structural study on ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers (III) dependence of transitional behavior on VDF molar content.” Ferroelectrics, 57(1), 297-326, 1984.
[23] Tanaka, R., Tashiro, K., & Kobayashi, M. “Annealing effect on the ferroelectric phase transition behavior and domain structure of vinylidene fluoride (VDF)–trifluoroethylene copolymers: a comparison between uniaxially oriented VDF 73 and 65% copolymers.” Polymer, 40(13), 3855-3865, 1999.
[24] Tashiro, K., & Kobayashi, M. “Structural study of the ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 4. Poling effect on structure and phase transition.” Polymer, 27(5), 667-676, 1986.
[25] Tashiro, K., Takano, K., Kobayashi, M., Chatani, Y., & Tadokoro, H. “Phase transition at a temperature immediately below the melting point of poly (vinylidene fluoride) from I: A proposition for the ferroelectric Curie point.” Polymer, 24(2), 199-204, 1983.
[26] Wahid, M., Hafiz, M., Mohd Dahan, R., Sa'ad, S. Z., Arshad, A. N., Sarip, M. N., & Majid, A. “Effect of annealing temperature on the crystallinity, morphology and ferroelectric of polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) thin film.” In Advanced Materials Research, 812, 60-65, 2013.
[27] Hess, C. M., Rudolph, A. R., & Reid, P. J. “Imaging the effects of annealing on the polymorphic phases of poly (vinylidene fluoride).” The Journal of Physical Chemistry B, 119(10), 4127-4132, 2015.
[28] Lee, J. S., Prabu, A. A., & Kim, K. J. “Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P (VDF-TrFE) film for nonvolatile polymer memory device.” Polymer, 51(26), 6319-6333, 2010.
[29] Lau K., Liu Y., Chen H., & Withers R. L., “Effect of Annealing Temperature on the Morphology and Piezoresponse Characterisation of Poly(vinylidene fluoride-trifluoroethylene) Films via Scanning Probe Microscopy.” Advances in Condensed Matter Physics, 2013, 435938-435943, 2013.
[30] Prabu, A. A., Lee, J. S., Kim, K. J., & Lee, H. S. “Infrared spectroscopic studies on crystallization and Curie transition behavior of ultrathin films of P (VDF/TrFE)(72/28).” Vibrational Spectroscopy, 41(1), 1-13, 2006.
[31] Lanceros-Mendez, S., Mano, J. F., Costa, A. M., & Schmidt, V. H. “FTIR and DSC studies of mechanically deformed β-PVDF films.” Journal of Macromolecular Science, Part B, 40(3-4), 517-527, 2001.
[32] Hashimoto, T., & Murase, H. “Cascading time evolution of dissipative structures leading to unique crystalline textures.” IUCrJ, 2(1), 59-73, 2015.
[33] Baniasadi, M., Xu, Z., Cai, J., Daryadel, S., Quevedo-Lopez, M., Naraghi, M., & Minary-Jolandan, M. “Correlation of annealing temperature, morphology, and electro-mechanical properties of electrospun piezoelectric nanofibers.” Polymer, 127(3), 192-202, 2017.
[34] Lutkenhaus, J. L., McEnnis, K., Serghei, A., & Russell, T. P. “Confinement effects on crystallization and curie transitions of poly (vinylidene fluoride-co-trifluoroethylene).” Macromolecules, 43(8), 3844-3850, 2010.
[35] Mackey, M., Flandin, L., Hiltner, A., & Baer, E. “Confined crystallization of PVDF and a PVDF‐TFE copolymer in nanolayered films.” Journal of Polymer Science Part B: Polymer Physics, 49(24), 1750-1761, 2011.
[36] Wang, H., Keum, J. K., Hiltner, A., & Baer, E. “Impact of nanoscale confinement on crystal orientation of poly (ethylene oxide).” Macromolecular Rapid Communications, 31(4), 356-361, 2010.
[37] Ponting, M., Lin, Y., Keum, J. K., Hiltner, A., & Baer, E. “Effect of substrate on the isothermal crystallization kinetics of confined poly (ε-caprolactone) nanolayers.” Macromolecules, 43(20), 8619-8627, 2010.
[38] Lee, Y., Kim, K. L., Kang, H. S., Jeong, B., Park, C., Bae, I., & Park, C. “Epitaxially Grown Ferroelectric PVDF‐TrFE Film on Shape‐Tailored Semiconducting Rubrene Single Crystal.” Small, 14(22), 1704024-1704032, 2018.
[39] Lotz, B., & Wittmann, J. C. “Epitaxy of helical polyolefins: Polymer blends and polymer‐nucleating agent systems.” Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 185(9), 2043-2052, 1984.
[40] Kim, K. L., Lee, W., Hwang, S. K., Joo, S. H., Cho, S. M., Song, G., & Yu, Y. J. “Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory.” Nano Letters, 16(1), 334-340, 2015.
[41] Fu, Z., Xia, W., Chen, W., Weng, J., Zhang, J., Jiang, Y., & Zhu, G. “Improved thermal stability of ferroelectric phase in epitaxially grown P (VDF-TrFE) thin films.” Macromolecules, 49(10), 3818-3825, 2016.
[42] Park, Y. J., Kang, S. J., Lotz, B., Brinkmann, M., Thierry, A., Kim, K. J., & Park, C. “Ordered ferroelectric PVDF-TrFE thin films by high throughput epitaxy for nonvolatile polymer memory.” Macromolecules, 41(22), 8648-8654, 2008.
[43] Mijovic, J., Sy, J. W., & Kwei, T. K. “Reorientational dynamics of dipoles in poly (vinylidene fluoride)/poly (methyl methacrylate)(PVDF/PMMA) blends by dielectric spectroscopy.” Macromolecules, 30(10), 3042-3050, 1997.
[44] Faria, L. O. D., & Moreira, R. L. “Structural and kinetic transitions in P (VDF–TrFE)/PMMA blends.” Polymer, 40(16), 4465-447, 1999.
[45] Faria, L. O., & Moreira, R. L. “Infrared spectroscopic investigation of chain conformations and interactions in P (VDF‐TrFE)/PMMA blends.” Journal of Polymer Science Part B: Polymer Physics, 38(1), 34-40, 2000.
[46] Saito, K., Miyata, S., Wang, T. T., Jo, Y. S., & Chujo, R. “Ferroelectric properties of a copolymer of vinylidene fluoride and trifluoroethylene blended with poly (methyl methacrylate).” Macromolecules, 19(9), 2450-2452, 1986.
[47] Sasaki, H., Bala, P. K., Yoshida, H., & Ito, E. “Miscibility of PVDF/PMMA blends examined by crystallization dynamics.” Polymer, 36(25), 4805-4810, 1995.
[48] Hudson, S. D., Davis, D. D., & Lovinger, A. J. “Semicrystalline morphology of poly (aryl ether ether ketone)/poly (ether imide) blends.” Macromolecules, 25(6), 1759-1765, 1992.
[49] Liu, T., Petermann, J., He, C., Liu, Z., & Chung, T. S. “Transmission electron microscopy observations on lamellar melting of cold-crystallized isotactic polystyrene.” Macromolecules, 34(13), 4305-4307, 2001.
[50] Grubb, D. T., & Keller, A. “Lamellar morphology of polyethylene: Electron microscopy of a melt‐crystallized sharp fraction.” Journal of Polymer Science: Polymer Physics Edition, 18(2), 207-216, 1980.
[51] Rastogi, S., & Ungar, G. “Hexagonal columnar phase in 1, 4-trans-polybutadiene: morphology, chain extension, and isothermal phase reversal.” Macromolecules, 25(5), 1445-1452, 1992.
[52] Hikosaka, M., Rastogi, S., Keller, A., & Kawabata, H. “Investigations on the crystallization of polyethylene under high pressure: role of mobile phases, lamellar thickening growth, phase transformations, and morphology.” Journal of Macromolecular Science, Part B: Physics, 31(1), 87-131, 1992.
[53] Sauer, B. B., & Hsiao, B. S. “Effect of the heterogeneous distribution of lamellar stacks on amorphous relaxations in semicrystalline polymers.” Polymer, 36(13), 2553-2558, 1995.
[54] Ivanov, D. A., Pop, T., Yoon, D. Y., & Jonas, A. M. “Direct Observation of Crystal− Amorphous Interphase in lamellar semicrystalline poly (ethylene terephthalate).” Macromolecules, 35(26), 9813-9818, 2002.
[55] Basire, C., & Ivanov, D. A. “Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: time-resolved hot-stage SPM study.” Physical review letters, 85(26), 5587, 2000.
[56] Jheng, L. C., Yang, C. Y., Leu, M. T., Hsu, K. H., Wu, J. H., Ruan, J., & Shih, K. C. “Novel impacts of glycol-modified poly (ethylene terephthalate)(PETG) to crystallization behavior of polyethylene naphthalate (PEN) within stretched miscible blends.” Polymer, 53(13), 2758-2768, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw