進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201910263800
論文名稱(中文) 評估對流層延遲對於GNSS-R監測沿岸海水面之影響
論文名稱(英文) Assessing Tropospheric Delay on Monitoring Coastal Sea Level Changes from GNSS-R
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系
系所名稱(英) Department of Geomatics
學年度 107
學期 2
出版年 108
研究生(中文) 洪紹倫
研究生(英文) Shao-Lun Hung
學號 P66061017
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 指導教授-郭重言
口試委員-曾國欣
口試委員-蕭宇伸
中文關鍵字 GNSS-R  訊號比資料  潮汐調和分析  對流層改正 
英文關鍵字 GNSS-R  SNR data  tidal harmonic analysis  tropospheric corrections 
學科別分類
中文摘要 近年來因氣候暖化導致全球海水面快速上升,衍生出許多嚴重問題和災害,對居住於沿海低窪地區人們的生命和財產安全產生嚴重的衝擊。因此,有效監測沿岸海水面變化是一個很重要的研究課題。一般而言,利用衛星測高與潮位站資料來觀測海水面變化,然而測高衛星在沿岸受到陸地干擾造成觀測精度不佳,潮位站觀測量則會受到地表垂直運動的影響。近來全球導航衛星系統(Global Navigation Satellite System, GNSS)反射訊號之訊噪比(Signal-to-Noise Ratio, SNR)資料被證實可有效地用來觀測海水面高度,用來補足改善前兩者所面臨的問題。本研究利用設於沿岸的GNSS測站之原先非用於監測海水面的反射訊號SNR資料,採用調和分析輔助Lomb Scargle Periodogram (LSP)法推求出海水面高度變化,而精度評估是與共站或鄰近潮位站資料進行比較求得。此外,由於對流層延遲會影響GNSS SNR資料估算海水面高度之精度,因此,我們也採用折射改正以及對流層模型改正來針對此項影響因素進行評估。本研究中分別採用孟加拉吉大港以及台灣和平港的GNSS測站進行計算,結果顯示吉大港站之GNSS-R解算結果與潮位站觀測量的差值標準偏差為30.4公分,相關係數為0.97;而和平港站之GNSS-R解算結果與潮位站觀測量的差值標準偏差為12.8公分,相關係數為0.96。另一方面,在吉大港站我們也發現對流層影響對於兩結果差值有著明顯的與仰角相關誤差,在做完折射改正之後,其差值的標準偏差可以從30.4公分提升為28.1公分,而做完對流層模型改正後差值的標準偏差可以從30.4公分提升為29.4公分。然而,台灣和平港站的仰角相關誤差不甚明顯,主要原因可能來自於潮差較小或是含有其他主要誤差來源,因此對流層改正之效果有限。
英文摘要 Due to global warming, the global mean sea level has risen rapidly in recent years, causing many serious impacts, especially in the coastal areas. Thus, monitoring coastal sea level changes is an important and hot topic. In general, the conventional methods to measure sea level variations are to use tide gauges and satellite altimetry; however, tide gauge measurements are affected by vertical land motions, and satellite altimetry observations in the coastal regions are inaccurate resulting from complex waveforms caused by land contaminations. Recently, signal-to-noise ratio (SNR) data from Global Navigation Satellite System (GNSS) have been demonstrated for measuring sea level heights. This study use GNSS-Reflectometry (GNSS-R) SNR data to retrieve sea level heights by the method of Lomb Scargle Periodogram (LSP) aided with tidal harmonic analysis, and the results are compared with the nearby traditional tide gauges. In addition, the tropospheric delays would cause errors in sea surface heights from GNSS SNR data, so two different tropospheric corrections are applied, including refraction correction and tropospheric model correction. In this study, the data from two GNSS stations at Chittagong site in Bangladesh and Heping site in Taiwan with different tidal ranges and surroundings are used. The result in Chittagong station shows the standard deviation (STD) of differences is 30.4 cm, and the correlation coefficient is 0.97, while the result in Heping station shows the STD of differences is 12.8 cm, and the correlation coefficient is 0.96. The clear elevation-dependent errors observed in Chittagong station are probably from tropospheric delays. After applying the refraction correction, the STD in Chittagong station is reduced from 30.4 cm to 28.1 cm. Moreover, after applying the tropospheric model correction, the STD in Chittagong station decreases from 30.4 cm to 29.4 cm. However, the elevation-dependent errors in Heping station is small. It may result from that the tidal range is small or the other larger errors are not corrected, so the tropospheric correction is limited.
論文目次 摘要I
Extended AbstractII
誌謝VIII
目錄IX
表目錄XI
圖目錄XII
第一章 緒論1
1.1 研究動機與目的1
1.2 論文架構7
第二章 GNSS-R介紹8
2.1 GNSS介紹8
2.1.1 GNSS架構8
2.1.2 GNSS誤差來源9
2.2 GNSS反射訊號11
2.2.1 訊號極化(Signal Polarization)11
2.2.2 第一費涅爾區(First Fresnel Zone)13
2.3 GNSS-R SNR分析法17
第三章 研究方法18
3.1 GNSS SNR理論18
3.2調和分析輔助Lomb Scargle Periodogram法22
3.2.1 Lomb Scargle Periodogram(LSP)22
3.2.2 潮汐調和分析23
3.3對流層改正26
3.3.1折射改正26
3.3.2對流層模型改正28
3.3.2.1 對流層延遲誤差28
3.3.2.2 GPT2模型30
第四章 研究成果及分析32
4.1 研究區域及資料32
4.1.1研究區域32
4.1.2研究資料34
4.1.3 SNR資料限制36
4.2結果分析-吉大港站37
4.2.1 GNSS-R計算結果38
4.2.2對流層改正42
4.2.2.1 折射改正42
4.2.2.2 對流層模型改正44
4.3 結果分析-和平港站46
4.3.1 GNSS-R計算結果47
4.3.2對流層改正49
4.3.2.1 折射改正49
4.3.2.2 對流層模型改正51
第五章 結論與建議54
參考文獻58
參考文獻 Anderson, K. D. (2000). Determination of water level and tides using interferometricobservations of GPS signals. Journal of Atmosheric Oceanic Technology, 17 (8), 1118–1127.
Askne, J., & Nordius, H. (1987). Estimation of tropospheric delay for microwaves from surface weather data. Radio Science 22(3):379–386.
Belmonte Rivas, M., Martin-Neira, M., (2006). Coherent GPS reflections from the sea surface. IEEE Geoscience and Remote Sensing Letters. 3, 28–31.
Bennett, G. G. (1982). The calculation of astronomical refraction in marine navigation. Journal of Navigation, 35:255–259.
Benton, C. J., & Mitchell, C. N. (2011). Isolating the multipath component in GNSS signal-to-noise data and locating reflecting objects. Radio Science, 46(06), 1-11.
Bevis, M., Businger, S., Herring, A. T., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system, Journal of Geophysical Research, 97(D14), 15,787–15,801.
Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. Journal of Geophysical Research: Solid Earth,113(B4).
Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, Journal of Geophysical Research.
Böhm, J., Möller, G., Schindelegger, M., Pain, G., & Weber, R. (2014). Development of an improved empirical model for slant delays in the troposphere (GPT2w), GPS Solutions., 19(3), 433–441.
Caparrini, M., Egido, A., Soulat, F., Germain, O., Farres, E., Dunne, S., Ruffini, G. (2007). Oceanpal®: monitoring sea state with a GNSS-R coastal instrument. In:Proceedings of the 2007 IEEE International Geoscience and Remote SensingSymposium, Barcelona, Spain, July 23–28, 2007, pp. 5080–5083.
Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L. L., & Callahan, P. S. (2001). Satellite 83 altimetry. International geophysics,69, 1-ii.
Cohen, J., Small, C., Mellinger, A., Gallup, J., Sachs, J., Vitousek, P., & Mooney, H. (1997). Estimates of coastal populations. Science, 278(5341), 1209–1213.
Duraiappah, A., Naeem, S., Agardy, T., Ash, N., Cooper, H., Diaz, S., Van Jaarsveld, A. (2005). Ecosystems and human well-being: Biodiversity synthesis. Coastal Systems.
Egbert, G., D., & Svetlana Y., E. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19.2: 183-204.
Elosegui, P., Davis, J. L., Jaldehag, R. T. K., Johansson, J. M., Niell, A. E., & Shapiro, I. I. (1995). Geodesy using the global positioning system—The effects of signal scattering on estimates of site position, Journal of Geophysical Research, 100(B6), 9921–9934.
Hobiger, T., Strandberg, J., & Haas, R. (2017). Troposphere delays from ground-based GNSS-R-self-calibration and new possibilities for atmosphere research. EGU General Assembly Conference Abstracts.
Hannah, B. M. (2001). Modelling and simulation of GPS multipath propagation (Doctoral dissertation, Queensland University of Technology).
Herring, T. A., Davis, J. L., & Shapiro, I. I. (1990). Geodesy by radio interferometry: The application of Kalman filtering to the analysis of very long baseline interferometry data, Journal of Geophysical Research., 95(B8), 12,561–12,581.
Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (2008). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer-Verlag Wien, New York, USA
ICAO (2007). International Standards and Recommended Practices, Annex 10 to the Convention on International Civil Aviation, Radio Navigation Aids. International Civil Aviation Organization, Montreal, Canada.
IOC (Intergovernmental Oceanographic Commission of UNESCO), (2006). Manual on Sea-level Measurements and Interpretation, Volume IV: An update to 2006, IOC Manuals and Guides No.14, vol. IV, JCOMM Technical Report No.31; WMO/TD. No.1339, 78 pp, Paris.
IPCC, (2013). Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. K., Tignor, M., Allen, SK, Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, PM, Eds, 1535.
ITU (International Telecommunication Union), (1992). Electrical Characteristics of the Surface of the Earth, Recommendation ITU-R P.527-3, ITU Radio communication Assembly.
Lagler, K., Schindelegger, M., Bo¨hm, J., Kra´sna´, H., & Nilsson, T. (2013). GPT2: empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters 40(6):1069–1073.
Larson, K. M., Small, E. E., Gutmann, E., et al. (2008). Using GPS multipath to measure soil moisture fluctuations: initial results, GPS Solutions, Vol. 12, 173-177.
Larson, K. M., Braun, J., Small, E. E., et al. (2010). GPS multipath and its relation to near-surface soil moisture content, IEEE Selected Topics in Applied Earth Observations and Remote Sensing, 91–99.
Larson, K. M., Löfgren, J. S., Haas, R. (2013a). Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51 (8), 1301–1310.
Larson, K. M., Ray, R. D., Nievinski, F. G., Freymueller, J. T. (2013b). The accidental tide gauge: a GPS reflection case study From Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10 (5), 1200–1204.
Lee, C. M., Kuo, C. Y., Sun, J., Tseng, T. P., Chen, K. H., Lan, W. H., Shum, C. K., Ali, T., Ching, K. E., Chu, P., Jia, Y. (2018). Evaluation and improvement of coastal GNSS reflectometry sea level variations from existing GNSS stations in Taiwan, Advances in Space Research
Liu, L., Larson, K. M. (2018). Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals. The Cryosphere 12:477–489.
Löfgren, J. S., Haas, R., & Johansson, J. M. (2011a). Monitoring coastal sea level using reflected GNSS signals. Advances in Space Research, 47(2), 213-220.
Löfgren, J.S., & Haas, R. (2014). Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP Journal on Advances in Signal Processing, 2014(1), 50.
Löfgren, J. S., Haas, R., & Scherneck, H. G. (2014b). Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. Journal of Geodynamics,80, 66-80.
Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and space science,39(2), 447-462.
Martin-Neira, M. (1993). A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA journal,17(4), 331-355.
Martin-Neira, M., Colmenarejo, P., Ruffini, G., Serra, C. (2002). Altimetry precision of1 cm over a pond using the wide-lane carrier phase of GPS reflected signals. Canadian Journal of Remote Sensing, 28 (3), 394–403.
Míguez, B. M., Testut, L., & Wöppelmann, G. (2012). Performance of modern tide gauges: towards mm-level accuracy. Scientia Marina, 76(S1), 221-228.
Misra, P., & Enge, P. (2006). Global Positioning System: Signals, Measurements, and Performance. 2nd Edition, Ganga-Jamuna Press, Lincoln.
Nilsson, T., Böhm, J., Wijaya, D. D., Tresch, A., Nafisi, V., & Schuh, H. (2013). Path delays in the neutral atmosphere, in Atmospheric Effects in Space Geodesy, edited by Böhm, J. and Schuh, H. pp. 73–136, Springer, Hiedelberg, Germany.
Press, W. H. (1992). The art of scientific computing. Cambridge university press.
Rees, W. G. (2013). Physical principles of remote sensing. Cambridge University Press.
Roussel, N., Frappart, F., Ramillien, G., Darrozes, J., Desjardins, C., Gegout, P., Pérosanz, F., & Biancale, R. (2014). Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments, Geoscientific Model Development, 7(5), 2261–2279.
Santamaria-Gomez, A., Watson, C., Gravelle, M., King, M., & Woppelmann, G. (2015). Levelling co-located GNSS and tide gauge stations using GNSS reflectometry, Journal of Geodesy, 89(3), 241–258.
Santamaría-Gómez, A., & Watson, C. (2016). Remote leveling of tide gauges using GNSS reflectometry: Case study at Spring Bay, Australia, GPS Solutions., 1–9.
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The use of artificial satellites for geodesy. Geophysical Monograph Series, 15:274–251. Am Geophys Union.
Scargle, J. D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal,263, 835.
Schwartz, M. (Ed.). (2006). Encyclopedia of coastal science. Netherlands: Springer Science & Business Media.
Shum, C. K., Ries, J. C., & Tapley, B. D. (1995). The accuracy and applications of satellite altimetry. Geophysical Journal International,121(2), 321-336.
Tralli, D. M., & Lichten, S. M. (1990). Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements, Journal of Geodesy, 64(2), 127–159.
Tralli, D. M., Lichten, S. M., & Herring, T. A. (1992). Comparison of Kalman filter estimates of zenith atmospheric path delays using the Global Positioning System and very long baseline interferometry, Radio Science, 27(6), 999–1007
Vagle, N., Broumandan, A., Jafarnia-Jahromi, A., & Lachapelle, G. (2016). Performance analysis of GNSS multipath mitigation using antenna arrays. The Journal of Global Positioning Systems,1(14), 1-15
Watkins, K., Ugaz, C., Carvajal, L. et al. Human Development Report 2007/2008 – Fighting Climate Change: Human Solidarity in a Divided World. Palgrave Macmillan, New York, USA, for United Nations Development Programme.
Wang, X., Zhang, Q., Zhang, S. (2018). Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram. GPS Solutions 22:22.
Wang, X., Zhang, Q., Zhang, S. (2019). Sea level estimation from SNR data of geodetic receivers using wavelet analysis. GPS Solutions 23:6.
Watson, C.S., White, N.J., Church, J.A., King, M.A., Burgette, R.J., Legresy, B., (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change 5, 565-568.
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551-1590.
Wei, W., Larson, K. M., Small, E. E., Chew, C. C., Braun, J. J. (2015). Using GPS Receivers to Measure Vegetation Water Content. GPS Solutions, 19(2):237–248.
Williams, S. D. P., & Nievinski, F. G. (2017). Tropospheric delays in ground-based GNSS multipath reflectometry—Experimental evidence from coastal sites, Journal of Geophysical Research. Solid Earth, 122, 2310–2327
Wu, Y. F., Wu, C. H., Lai, D. Y., & Chen, F. C. (2007). A reconfigurable quadri-polarization diversity aperture-coupled patch antenna. IEEE Transactions on Antennas and Propagation,55(3), 1009-1012.
Zavorotny, A. U., Voronovich, A. G. (2000). Scattering of GPS Signals from the Ocean with Wind Remote Sensing Application, IEEE Transactions on Geosciences and Remote Sensing, Vol. 38, 951-964.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw