進階搜尋


下載電子全文  
系統識別號 U0026-2108201819134900
論文名稱(中文) 電離層磁暴與電漿泡效應對全球衛星定位系統之影響
論文名稱(英文) Ionosphere magnetic storm and plasma bubble effects to the precision of global positioning system
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 陳彥凱
研究生(英文) Yan-Kai Chen
學號 L46051162
學位類別 碩士
語文別 中文
論文頁數 57頁
口試委員 指導教授-林建宏
口試委員-陳佳宏
口試委員-詹劭勳
中文關鍵字 全球定位系統  定位  電漿泡  磁暴 
英文關鍵字 GPS  positioning  plasma bubble  geomagnetic storm 
學科別分類
中文摘要 全球衛星定位系統應用日漸廣泛的今日,對定位精準度的要求也日漸嚴格,而不同種的定位方式擁有不同的定位精準度。而造成定位誤差的誤差項中,電離層造成的誤差為最大的,因此本研究對兩種電離層事件(磁暴與電漿泡)當下的GPS資料分別使用五種定位方式(1. 單點定位(Single Point Positioning ,SPP)-使用Klobuchar model消除電離層延遲、2. 單點定位-使用雙頻組合消除電離層延遲(又稱Ion-Free)、3. 差分全球定位系統(Differential Global Positioning System, DGPS)、4. 廣域差分全球定位系統(Wide Area Differential Global Positioning System, WADGPS)及5. 實時動態載波相位差分技術(Real-Time Kinematic, RTK) )進行定位並計算定位誤差,其中除了SPP(Ion-Free)為雙頻定位外,本研究使用之SPP(Klobuchar model)、DGPS、WADGPS及RTK皆為使用單頻(L1、C1)定位。本研究選用2003年11月20日的超級磁暴以及2015年3月14日經過台灣上空的三個電漿泡。結果發現SPP(Klobuchar model)在平日最大誤差約為15m,Root Mean Square(RMS)約為5.5m,而磁暴時最大定位誤差最大之接近50m,RMS將近20m,電漿泡事件最大定位誤差約為20m,RMS約8.5m;SPP(Ion-Free)對於事件發生當下定位結果的穩定度最佳,無論磁暴或是電漿泡,定位誤差最大值與標準差結果皆與參考日差異不大;而DGPS以及WADGPS受事件影響明顯,DGPS與WADGPS平日定位誤差在5m以下、RMS在2m以下,在磁暴時DGPS最大誤差可達50m,RMS達12.23m、WADGPS則為30m,RMS 5.8m、電漿泡時DGPS最大誤差可達12.5m,RMS 3.37m、WADGPS則為10m,RMS 2.84m,DGPS以及WADGPS在事件發時RMS數值比較參考天的成長幅度比SPP(Ion-Free)及SPP(Klobuchar model)大,但其受影響後的定位誤差仍優於SPP(Klobuchar model),甚至接近SPP(Ion-Free);而使用了載波相位定位的RTK平日定位誤差在1m以下,但磁暴時最大誤差可達200m,RMS達23.33m、電漿泡最大誤差達80m,RMS 26.18m,無論最大誤差或是標準差,其數值皆為本研究所探討的定位法中最大的。另外也發現所有定位方法在磁暴過後定位品質皆提升不少。
英文摘要 In this thesis, the GNSS positioning errors introduced by space weather events, geomagnetic storms and equatorial plasma bubbles, are investigated using five positioning algorithms: (1) Single Point Positioning (SPP) - using Klobuchar model to eliminate ionospheric delay, (2) SPP-Ion-Free - using dual-frequency to eliminate ionospheric delay, (3) Differential Global Positioning System (DGPS), (4) Wide Area Differential Global Positioning System (WADGPS) and (5) Real-Time Kinematic (RTK). For the geomagnetic storm condition, the super storm occurred during 2003/11/20 is investigated for the mid-latitude area; and the intense equatorial plasma bubble event occurred during 2015/03/15 is investigated for low-latitude area.
The results show that before the geomagnetic storm event, the maximum positioning errors for SPP, SPP-Ion-Free, DGPS, WADGPS, RTK are 15m, 12.5m, 3m, 3m and 2m, with the root mean square (RMS) of 5.13m, 5.42m, 0.95m, 0.8m and 0.93m, respectively. During the super storm period, the maximum positioning errors of SPP, SPP-Ion-Free, DGPS, WADGPS, RTK are 50m, 15m, 50m, 30m and 200m, with the RMS are 19.7m, 5.8m, 12.23m, 5.8m and 23.33m, respectively.
For the low-latitude region without plasma bubble occurrence, the maximum positioning errors for SPP, SPP-Ion-Free, DGPS, WADGPS, RTK are 15m, 10m, 2.5m, 2.5m and 3m, RMS are 5.9m, 3.5m, 1.6m, 1.25m and 0.98m, respectively; when the equatorial plasma bubble occurred, the maximum positioning errors of SPP, SPP-Ion-Free, DGPS, WADGPS, RTK amplified to 20m, 10m, 12.5m, 11m and 80m, RMS are 5.9m, 3.4m, 1.57m, 1.25m and 26.18m, respectively.
For SPP-Ion-Free, although it is not the best positioning method on the days without the events, but it is less affected by the ionospheric disturbances showing similar errors of ~10-15 m.
For DGPS and WADGPS, although they perform well on the days without the events, but become vulnerable under ionospheric disturbances.
Last, RTK uses carrier phase to calculate rover position, so it has the best positioning results on the days without storm and plasma bubbles. However, on event days, RTK will become not available.
論文目次 摘要 i
Abstract iii
致謝 vi
目錄 vii
表目錄 ix
圖目錄 x
第1章 緒論 1
1.1 電離層簡介 1
1.1.1 赤道電離層異常 2
1.1.2 磁暴電離層效應 4
1.1.3 電漿泡 6
1.2 研究動機與目的 8
第2章 觀測儀器與分析方法 10
2.1 全球定位系統介紹與測距原理 11
2.2 最小平方法 14
2.3 誤差量修正 19
2.3.1 接收站時鐘誤差消去: 19
2.3.2 大氣誤差量消去: 19
2.3.3 電離層誤差量消去: 20
2.3.4 衛星時鐘誤差消去以及計算衛星位置: 23
2.4 單點定位 26
2.5 差分全球定位系統 27
2.6 廣域差分全球定位系統 28
2.7 實時動態載波相位差分技術 29
2.7.1 卡爾曼濾波器設計 29
2.8 SPP(Klobuchar model)、SPP(Ion-Free)、DGPS、WADGPS、RTK的比較 33
2.9 磁暴事件以及其測站資料選取與資料處理方法 35
2.10 電漿泡事件以及其測站資料選取與資料處理方法 36
第3章 資料分析與觀測結果 37
3.1 磁暴事件 37
3.1.1 Dst Index 37
3.1.2 TEC map 38
3.1.3 測量站TEC數值比較 39
3.1.4 各定位方法結果 39
3.2 電漿泡事件 43
3.2.1 觀測照片 43
3.2.2 ROTI map 44
3.2.3 測量站TEC數值 47
3.2.4 各定位方法結果 47
第4章 結果與討論 51
第5章 未來工作 54
參考文獻 55
參考文獻 Skone, S., R. Yousuf, and A. Coster (2004), Combating the Perfect Storm Improving Marine Differential GPS Accuracy with a Wide-Area Network, GPS World, October 2004, pp. 31-38
Kelley, M. C. (2009), The Earth’s Ionosphere Plasma Physics and Electrodynamics, 2nd Edition, Boston
Michael J. Dunn (2013), IS-GPS-200H Global Positioning Systems Directorate Systems Engineering & Integration: Interface Specification IS-GPS-200 Navstar GPS Space Segment/Navigation User Interfaces
Teunissen, P.J.G. (1993), Least-squares estimation of the integer GPS ambiguities, LGR series no 6. Delft Geodetic Computing Centre
Teunissen, P.J.G. (1995), The least-square ambiguity decorrelation adjustment: a method for fast GPS ambiguity estimation, J.Geodesy, vol.70, pp. 65-82
Teunissen, P.J.G., P. J. de Jonge, and C. C. J. M. Tiberius (1997), The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans, , J.Geodesy, vol.71, pp. 589-602
Teunissen, P.J.G., and O. Montenbruck (2017), Handbook Springer of Global Navigation Satellite Systems
Hysell, D. L., and J. D. Burchan, (1998), JULIA radar studies of equatorial spread F, J. Geophys. Res. 103(A12), pp. 29,155-29,167
Takasu, T., and A. Yasuda (2010), Kalman-Filter-Based Integer Ambiguity Resolution Strategy for Long-Baseline RTK with Ionosphere and Troposphere Estimation, ION GNSS 2010. Portland, 161-171
Davies, K. (1990), Ionospheric Radio, Short Run Press Ltd., Exeter, England
Appleton, E. V. (1946), Two anomalies in the ionosphere, Nature, 157, 691, doi:10.1038/157691a01946
Duncan, R. A. (1960), The equatorial F region of the ionosphere, J. Atmos. Terr. Phys., 18, 89–100.
Anderson, D. N. (1973), A theoretical study of the ionospheric F region equatorial anomaly—I. Theory, Planet. Space Sci., 21, 409–419, doi:10.1016/0032-0633(73)90040-8.
Balan, N., and G. J. Bailey (1995), Equatorial plasma fountain and its effects: Possibility of an additional layer, J. Geophys. Res., 100, 21,421–21,432, doi:10.1029/95JA01555.
Rishbeth, H. (2000), The equatorial F-layer: Progress and puzzles, Ann. Geophys., 18, 730–739, doi:10.1007/s00585-000-0730-6.
Shim, J. S., L. Scherliess, R. W. Schunk, and D. C. Thompson (2010), Neutral wind and plasma drift effects on low and middle latitude total electron content, J. Geophys. Res., 115, A04307, doi:10.1029/2009JA014488.
Coster, A., J. Foster, and P. Erickson (2003), Space Weather: Monitoring the Ionosphere with GPS, GPS World, May 2003, pp. 42-49
Jacobsen, K. S., (2014), The impact of different sampling rates and calculation time intervals on ROTI values, J Sp Weather Sp Clim 4:A33. doi:10.1051/swsc/2014031
Klobuchar, J. (1987), Ionospheric Time-Delay Algorithms for Single-Frequency GPS Users, IEEE Transactions on Aerospace and Electronic Systems (3), pp. 325-331.
Saastamoinen, J. (1972), Atmospheric correction for the troposphere and stratosphere in radio ranging satellites, In The Use of Artificial Satellites for Geodesy; Henriksen, S., Mancini, A., Chovitz, B., Eds.; American Geophysical Union: Washington, WA, USA
Saastamoinen, J. (1973), Contribution of the theory of atmospheric refraction, Bull. Géod. 1973, 107, pp. 13–34.
Elliott D. Kaplan, Christopher J. Hegarty, 1996: Understanding GPS Principles and Applications, 2nd Edition , Boston
林建宏 (2007), 福爾摩沙衛星三號觀測太空天氣變化, 國研科技, 卷期:16 民96.10, 頁7-9
Pi, X., A. J. Mannucci, U. J. Lindqwister, and C. M. Ho (1997), Monitoring of Global Ionospheric Irregularities Using the Worldwide GPS Network, Geophys. Res. Lett. 24, 2283–2286.
RTKLIB ver. 2.4.2 Manual, Available from: http://www.rtklib.com/prog/manual_2.4.2.pdf (Accessed 29 June 2018)
Takasu, T., and A.Yasuda, RTKLIB: An open source program package for GNSS positioning, Available from: http://www.rtklib.com (Accessed 29 June 2018)
Takasu, T., and A.Yasuda (2009), Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB, International Symposium on GPS/GNSS, International Convention Center Jeju, Korea, November 4-6 (rev.A submitted)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw