進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201814432500
論文名稱(中文) 氧化鋅摻鎵透明電極之製備表面改質及其應用於電阻式記憶體:氫電漿處理、氮氫退火與二氧化鉬緩衝層
論文名稱(英文) Fabrication of ZnO:Ga Transparent Electrodes with Surface Modifications and these Applications in RRAM Device
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 王俐文
研究生(英文) Li wen Wang
學號 N26054061
學位類別 碩士
語文別 英文
論文頁數 91頁
口試委員 指導教授-朱聖緣
口試委員-洪茂峰
口試委員-盧達生
口試委員-水瑞鐏
口試委員-林俊成
中文關鍵字 氧化鋅:鎵透明導電膜  氫電漿後處理  氮氫氣體後處理  二氧化鉬緩衝層  全透明電阻式記憶體  
英文關鍵字 Ga:ZnO  hydrogen post treatment  N2/H2 post treatment  MoS2 buffer layer  transparent RRAM 
學科別分類
中文摘要 近年來半導體產業蓬勃發展,透明元件在未來的市場也頗具有發展性,其中透明導電膜扮演重造的角色,可用於透明電阻式記憶體(TRRAM)、光感測器與太陽能電池等。本論文使用氧化鋅:鎵為透明導電膜的材料,是看中其具備非毒性與高穩定性之特色,並對其不同氫氣後處理(氫電漿、氮氫管爐退火)或二氧化鉬緩衝層來提升透明導電膜之特性。
在此論文中,我們使用射頻濺鍍系統製備透明導電膜,並利用氫電漿與氮氫退火作為薄膜的後處理,由實驗結果得知,其電阻值有效地下降,穿透度部分在氮氫退火中有效提升,而兩種後處理的原理機制與相似相異之處,在論文中詳細探討。而使用二氧化鉬作為緩衝層,二氧化鉬為現今熱門二維材料,目前尚未有相關文獻對於二氧化鉬作為透明導電膜緩衝層,在論文中可發現此作法有效降低透明氧化鋅:鎵薄膜之電阻值,其詳細內容在論文中作為探討。
在實際運用上,使用經過氮氫後處理之透明電極作為氧化鋅系列全透明電阻式記憶體,有效提升元件記憶窗特性至106 且整體穿透度有所提升,對於實際運用面有所助益。
英文摘要 Transparent conductive oxides (TCOs) bear more importance as the semiconductor industry develops. TCOs can be used for transparent resistive random access memory (RRAM), photodetectors, and solar cells. In this study, Ga:ZnO (GZO) thin films were fabricated as TCOs due to their non-toxicity and stability. Three different methods were proposed to improve the electrical properties of GZO thin films: (1) hydrogen plasma post-annealing, (2) nitrogen/hydrogen (N2/H2) mixture gas furnace annealing, and (3) using the popular 2D material MoS2 quantum dot films as the buffer layer.
We used radio frequency sputtering to deposit the GZO on the thin films. The sheet resistance of GZO thin films reduced under hydrogen plasma treatment and N2/H2 furnace annealing treatment. Film transmittance increased after N2/H2 mixture gas furnace annealing. Comparisons of these treatments will be discussed. MoS2 buffer layer can effectively reduce the sheet resistance of films. The detailed mechanism was also investigated.
 For RRAM applications, the GZO bottom electrodes under N2/H2 post treatment not only improved the RRAM on/off ratio by six orders but also increased the transmittance of the device.
論文目次 Table of Contents
ABSTRACT I
摘要 II
致謝 III
LIST OF TABLES VII
LIST OF FIGURES VIII
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 MOTIVATION 3
CHAPTER 2 THEORY AND LITERATURE REVIEW 6
2.1 CHARACTERISTICS OF ZINC OXIDE 6
2.2 RESISTANCE RAM (RRAM) 9
2.2.1 Basic Concepts of RRAM 11
2.3 BASIC THEORY FOR RRAM OPERATION 13
2.3.1 Forming voltage 13
2.3.2 Operation method 14
2.3.3 Resistance ratio 14
2.3.4 Retention 15
2.3.5 Endurance 15
2.3.6 Operation Speed 15
2.4 THE MECHANISM OF CURRENT CONDUCTION 16
2.4.1 Ohmic Conduction 16
2.4.2 Tunneling Conduction 17
2.4.2.1 Direction Tunneling 17
2.4.2.2 Fowler-Nordheim (FN) Tunneling 17
2.4.2.2 FN tunneling 17
2.4.3 Schottky emission 19
2.4.4 Poole-Frankel (PF) Emission 20
2.4.5 Space-Charge-Limited-Current (SCLC) 20
2.5 TRANSPARENT RRAM 21
CHAPTER 3 EXPERIMENTS AND MEASUREMENT TECHNIQUES 23
3.1 EXPERIMENTAL METHODS 23
3.1.1 The RF sputtering system 23
3.1.2 The Transparent GZO electrode and transparent RRAM process 25
3.2.1 UV-ozone treatment 28
3.2.2 X-ray photoelectron spectroscopy (XPS measurements) 28
3.2.3 UV transmittance 29
3.2.4 Hall effect measurement. 30
3.2.5 X-ray Diffraction (XRD) Spectroscopy 33
3.2.6 Scanning Electron Microscope (SEM) 33
3.2.7 Secondary Ion Mass Spectrometry(SIMS) 34
3.2.8 Atomic Force Microscope (AFM) 35
3.2.9 Work function measurement 35
3.2.10 RRAM characteristic analysis 36
3.2.11 Overview of surface energy 38
CHAPTER 4 RESULT AND DISCUSSIONS 40
4.1 MATERIAL CHARACTERISTICS OF HYDROGEN SERIES POST TREATMENT 40
4.1.1 Analysis of GZO electrical property for hydrogen plasma post treatment 40
4.1.2 Material characteristics of hydrogen furnace annealing 55
4.1.3 Comparison between hydrogen plasma and hydrogen annealing 68
4.2 MATERIAL CHARACTERISTICS OF MOS2 BUFFER LAYER 70
4.3 T-RRAM 76
4.3.1 Effects of furnace N2/H2 annealing of GZO bottom electrode on the performance of RRAM 76
4.4 MOS2 BUFFER LAYER FOR T-RRAM 83
CHAPTER 5 CONCLUSION AND FUTURE WORKS 85
5.1 CONCLUSION 85
5.2 FUTURE WORKS 85
REFERENCES 86

List of Tables
Table2 1 Physical properties of wurtzite ZnO [16]. 8
Table2 2 The recent history of transparent RRAM. 22
Table 3-1 Working parameters for GZO thin film. 26
Table 3 2 Tension values of two liquids. 38
Table 4 1 Hall measurement for different hydrogen plasma post treatments, carrier concentrations, mobility, resistivity, and sheet resistance 44
Table4 2 FWHM values calculated by XRD analysis with different powers during hydrogen plasma post treatment. 44
Table 4 3 Work function at different post treatments 52
Table 4 4 Surface energy calculated by contact angle 52
Table 4 5 Energy gap for GZO thin film after hydrogen plasma treatment 55
Table 4 6 FWHM values of GZO thin films after annealing. 59
Table 4 7 Energy gap for GZO thin film with MoS2 buffer layer. 73
Table 4 8 Surface energy for GZO thin film with MoS2 buffer layer. 75
Table 4 9 FWHM and grain size for GZO thin film with MoS2 buffer layer 75
Table 4 10 Comparison between Samples I and II. 80


List of Figures
Figure 1.1 Transparent display technology evolution and global display market[6]. 3
Figure 2.1 Zincite [10] 7
Figure 2.2 Types of ZnO crystal structures [11] 7
Figure 2.3 Classification of the resistive switching effects that are considered for non-volatile memory applications[19]. 10
Figure 2.4 (a) MIM sandwich structure of RRAM. Schematic I-V curves of (b) unipolar and (c) bipolar switching [20]. 12
Figure2.5 Operation mode of (a) unipolar and (b) bipolar switching [18]. 14
Figure 3.1 Actual system photographs of RF magnetron sputtering at (a) 3 and (b) 2 in (AEO laboratory). 27
Figure 3.2 UV-ozone treatment device. 28
Figure3.3 XPS machine at the NCKU Instrument Center. 29
Figure 3.4 Transmittance measurement. 30
Figure 3.5 Schematic of the Hall effect [39]. 32
Figure 3.6 HMS-3000 for Hall effect measurement [40]. 32
Figure 3.7 D2 XRD equipment[19]. 33
Figure3.8 Scanning electron microscopy measurement system 34
Figure 3.9 Diagram for the working principle of SIMS[41]. 35
Figure 3.10 Measurement system for ACII 36
Figure 3.11 The ACII for work function measurement 36
Figure 3.12 Semiconductor parameter analyzer (Agilent 4155 C). 37
Figure 4.1 XRD patterns of GZO thin films after different hydrogen plasma treatments. 45
Figure 4.2 Process for hydrogen plasma treatment. 46
Figure 4.3 XPS diagrams for O1s GZO thin film after hydrogen post treatment. 48
Figure 4.4 SIMS diagrams for GZO thin films after hydrogen post treatment. (a) Hydrogen (b) Zn–O bond, and (c) Ga–O bond 50
Figure 4.5 Contact angle for GZO thin film after different hydrogen plasma treatments 51
Figure 4.6 ACII results obtained from the work function. 52
Figure 4.7 SEM of GZO thin films after hydrogen plasma treatment 53
Figure 4.8 Transmittance of GZO thin films after hydrogen plasma treatment 54
Figure 4.9 Squared absorption coefficient for GZO thin films after hydrogen plasma treatment 54
Figure 4.10 XRD patterns for GZO thin films after annealing 59
Figure 4.11 XPS diagram for O1s GZO thin film after hydrogen annealing 62
Figure 4.12 XPS diagram for Zn 3d GZO thin films after hydrogen annealing. 63
Figure 4.13 SIMS diagram for GZO thin films after hydrogen annealing. 64
Figure 4.14 Contact angles for GZO thin film after hydrogen annealing. 66
Figure 4.15 Contact angles for GZO thin film after hydrogen annealing with DI water. 67
Figure 4.16 Transmittance for GZO thin films after hydrogen annealing. 67
Figure 4.17 Absorption line for GZO thin films after annealing 68
Figure 4.18 Absorption line for GZO thin film with MoS2 buffer layer. 73
Figure 4.19 Transmittance for GZO thin film with MoS2 buffer layer 74
Figure4-20 AFM of normal GZO thin film. 74
Figure 4-21 AFM of GZO thin film with MoS2 buffer layer. 75
Figure 4-22 T Contact angle for GZO thin film with MoS2 buffer layer 75
Figure 4.24 I-V curve for Sample I 79
Figure 4.25 I-V curve for Sample II 80
Figure 4.26 T-RRAM fitting diagram for Sample I 80
Figure 4.27 T-RRAM fitting diagram for Sample II 81
Figure 4.28 Oxygen filament forming process. 81
Figure 4.29 Transmittance for Sample I 82
Figure 4.30 Transmittance for Sample II 82
Figure 4.31 T-RRAM I-V curve for Sample III 83
參考文獻 References
[1] Y.-D. Ko, K.-C. Kim, and Y.-S. Kim, “Effects of substrate temperature on the Ga-doped ZnO films as an anode material of organic light emitting diodes,” Superlattices and Microstructures, vol. 51, no. 6, pp. 933-941, 2012.
[2] Y. Lin, T. Chen, L. Wang, and S. Lien, “Comparison of AZO, GZO, and AGZO thin films TCOs applied for a-Si solar cells,” Journal of The Electrochemical Society, vol. 159, no. 6, pp. H599-H604, 2012.
[3] D.-J. Yun, and S.-W. Rhee, “Composite films of oxidized multiwall carbon nanotube and poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as a contact electrode for transistor and inverter devices,” ACS applied materials & interfaces, vol. 4, no. 2, pp. 982-989, 2012.
[4] Y. Wang, “Resistive‐switching mechanism of transparent nonvolatile memory device based on gallium zinc oxide,” physica status solidi (a), vol. 209, no. 2, pp. 364-368, 2012.
[5] J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, and S. H. Ko, “Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel,” Nanoscale, vol. 4, no. 20, pp. 6408-6414, 2012.
[6] P. Barquinha, R. Martins, L. Pereira, and E. Fortunato, Transparent oxide electronics: from materials to devices: John Wiley & Sons, 2012.
[7] H.-K. Kim, K.-J. Ahn, H. Jang, and H. Lee, “Dependence of Electrical, Optical, and Structural Properties on the Thickness of GZO Films Prepared by CRMS,” Journal of The Electrochemical Society, vol. 159, no. 1, pp. H38-H43, 2011.
[8] T. Yamamoto, T. Sakemi, K. Awai, and S. Shirakata, “Dependence of carrier concentrations on oxygen pressure for Ga-doped ZnO prepared by ion plating method,” Thin solid films, vol. 451, pp. 439-442, 2004.
[9] J.-L. Wu, H.-Y. Lin, B.-Y. Su, Y.-C. Chen, S.-Y. Chu, S.-Y. Liu, C.-C. Chang, and C.-J. Wu, “Comparison of physical and electrical properties of GZO/ZnO buffer layer and GZO as source and drain electrodes of α-IGZO thin-film transistors,” Journal of Alloys and Compounds, vol. 592, pp. 35-41, 2014.
[10] "The Zincite," http://www.chinaneolithic.com/en/Mineral/photos.asp?ID=65
[11] "ZnO Figure," http://www.wikiwand.com/zh-tw/%E6%B0%A7%E5%8C%96 %E9%8B%85.
[12] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488, 2004.
[13] A. Bakin, A. El‐Shaer, A. C. Mofor, M. Al‐Suleiman, E. Schlenker, and A. Waag, “ZnMgO‐ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano‐LEDs,” physica status solidi c, vol. 4, no. 1, pp. 158-161, 2007.
[14] A. Bakin, A. Behrends, A. Waag, H.-J. Lugauer, A. Laubsch, and K. Streubel, “ZnO-GaN hybrid heterostructures as potential cost-efficient LED technology,” Proceedings of the IEEE, vol. 98, no. 7, pp. 1281-1287, 2010.
[15] D. C. Look, “Recent advances in ZnO materials and devices,” Materials Science and Engineering: B, vol. 80, no. 1-3, pp. 383-387, 2001.
[16] S. O. Kucheyev, J. Williams, C. Jagadish, J. Zou, C. Evans, A. Nelson, and A. Hamza, “Ion-beam-produced structural defects in ZnO,” Physical Review B, vol. 67, no. 9, pp. 094115, 2003.
[17] T. Hickmott, “Low‐frequency negative resistance in thin anodic oxide films,” Journal of Applied Physics, vol. 33, no. 9, pp. 2669-2682, 1962.
[18] R. Waser, and M. Aono, “Nanoionics-based resistive switching memories,” Nature materials, vol. 6, no. 11, pp. 833, 2007.
[19] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges,” Advanced materials, vol. 21, no. 25-26, pp. 2632-2663, 2009.
[20] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[21] M. J. Marinella, and V. V. Zhirnov, Emerging Memory Devices: Assessment and Benchmarking: John Wiley & Sons Ltd, Chichester, United Kingdom, 2014.
[22] S. M. Sze, and K. K. Ng, Physics of semiconductor devices: John wiley & sons, 2006.
[23] R. W. Gurney, and E. U. Condon, “Quantum mechanics and radioactive disintegration,” Physical Review, vol. 33, no. 2, pp. 127, 1929.
[24] E. L. Murphy, and R. Good Jr, “Thermionic emission, field emission, and the transition region,” Physical review, vol. 102, no. 6, pp. 1464, 1956.
[25] J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semi-conductors,” Physical Review, vol. 54, no. 8, pp. 647, 1938.
[26] C. Child, “Discharge from hot CaO,” Physical Review (Series I), vol. 32, no. 5, pp. 492, 1911.
[27] J. W. Seo, J.-W. Park, K. S. Lim, J.-H. Yang, and S. J. Kang, “Transparent resistive random access memory and its characteristics for nonvolatile resistive switching,” Applied Physics Letters, vol. 93, no. 22, pp. 223505, 2008.
[28] X. Cao, X. Li, X. Gao, X. Liu, C. Yang, R. Yang, and P. Jin, “All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature,” Journal of Physics D: Applied Physics, vol. 44, no. 25, pp. 255104, 2011.
[29] R. Zhang, J. Miao, F. Shao, W. Huang, C. Dong, X. Xu, and Y. Jiang, “Transparent amorphous memory cell: a bipolar resistive switching in ZnO/Pr 0.7 Ca 0.3 MnO 3/ITO for invisible electronics application,” Journal of Non-Crystalline Solids, vol. 406, pp. 102-106, 2014.
[30] P. M. Martin, Handbook of deposition technologies for films and coatings: science, applications and technology: William Andrew, 2009.
[31] D. M. Mattox, Handbook of physical vapor deposition (PVD) processing: William Andrew, 2010.
[32] K. Seshan, "Handbook of thin film deposition (William Andrew)," Elsevier, 2012.
[33] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” Journal of Applied Physics, vol. 87, no. 1, pp. 295-298, 2000.
[34] J. F. Watts, and J. Wolstenholme, “An introduction to surface analysis by XPS and AES,” An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May 2003., pp. 224, 2003.
[35] "XPS diagram"; http://www.ncku.edu.tw/facility/facility/devices/23_ESCA.htm.
[36] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Physical Review Letters, vol. 48, no. 22, pp. 1559, 1982.
[37] R. B. Laughlin, “Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations,” Physical Review Letters, vol. 50, no. 18, pp. 1395, 1983.
[38] F. D. M. Haldane, “Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states,” Physical Review Letters, vol. 51, no. 7, pp. 605, 1983.
[39] M. S. Islam, M. S. Hossen, M. M. H. Prince, and A. Arefin, “SIMULATION AND ANALYSIS OF CHARACTERISTICS OF Quantum-Well FET,” 2015.
[40] "Hall,"http://four-point-probes.com/ecopia-hms-3000-hall-measurement-system/.
[41] "SIMS figure"; https://www.cameca.com/products/sims/technique.
[42] L. Hołysz, “Investigation of the effect of substrata on the surface free energy components of silica gel determined by thin layer wicking method,” Journal of materials science, vol. 35, no. 24, pp. 6081-6091, 2000.
[43] J. You, X. Zhang, P. Cai, J. Dong, Y. Gao, Z. Yin, N. Chen, R. Wang, and H. Yan, “Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment,” Applied Physics Letters, vol. 94, no. 26, pp. 262105, 2009.
[44] A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, and D. Winkler, “Effect of oxygen vacancies in the SrTiO 3 substrate on the electrical properties of the LaAlO 3∕ SrTiO 3 interface,”Physical Review B, vol. 75, no. 12, pp. 121404, 2007.
[45] Y.-L. Lee, S.-F. Chen, C.-L. Ho, and M.-C. Wu, “Effects of oxygen plasma post-treatment on Ga-doped ZnO films grown by thermal-mode ALD,” ECS Journal of Solid State Science and Technology, vol. 2, no. 7, pp. P316-P320, 2013.
[46] S. Y. Kim, J.-L. Lee, K.-B. Kim, and Y.-H. Tak, “Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes,” Journal of Applied physics, vol. 95, no. 5, pp. 2560-2563, 2004.
[47] Transmittance and roughness, " https://www.researchgate.net/post/How_does_sur- face_roughness_effects_the_transmittance"
[48] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, “Resistive switching memory effect of Zr O 2 films with Zr+ implanted,” Applied physics letters, vol. 92, no. 1, pp. 012117, 2008.
[49] 雷晓艺, 刘红侠, 高海霞, 杨哈妮, 王国明, 世兵, 马晓华, and 刘明, “Resistive switching characteristics of Ti/ZrO2/Pt RRAM device,” 中国物理 B: 英文版, no. 11, pp. 507-511, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw