進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-2108201814210800
論文名稱(中文) 富含二水合磷酸氫鈣骨泥促進骨融合-大鼠脊椎骨融合模型
論文名稱(英文) Use of DCP-rich Calcium Phosphate Cement for Controlling Osseointegration in A Rat Spinal Fusion Model
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 胡名賢
研究生(英文) Ming-Hsien Hu
學號 P88001106
學位類別 博士
語文別 英文
論文頁數 87頁
口試委員 指導教授-胡晉嘉
口試委員-陳文正
召集委員-張志涵
口試委員-蘇芳慶
口試委員-李政鴻
口試委員-朱旆億
口試委員-楊岱樺
中文關鍵字 磷酸鈣骨水泥  骨整合  大鼠脊椎融合實驗 
英文關鍵字 Calcium phosphate cement  osseointegration  rat lumbar spine fusion model 
學科別分類
中文摘要 磷酸鈣骨水泥被拿來運用在牙科或骨科手術,當作是骨缺損填充物,或是促進骨融合。近期文獻記載愈來愈多人選擇使用磷酸鈣骨水泥於手術中, 理由是磷酸鈣骨水泥較易填充骨缺損處,且接觸面積提高有助於骨生成;然而磷酸鈣骨水泥有一項缺點,就是容易被體液或血液沖洗掉,降低磷酸鈣局部濃度,影響骨融合。研究團隊將磷酸鈣骨水泥表面奈米化處理後會提升磷酸鈣粒子間鍵結力,進而大幅提升其抗沖洗的能力。這種新式抗沖洗磷酸鈣骨水泥稱之為non-dispersive CPC,此類磷酸鈣骨水泥是由四鈣磷酸鹽與二水合磷酸氫鈣依不同比率組成。
本研究試著去比較新式磷酸鈣骨水泥(non-disperstive CPC) 相較於市售磷酸鈣塊材(commercial calcium phosphate granule, c-CPG) 是否有較佳的骨整合能力。被測試的新式磷酸鈣骨水泥有兩種,第一種是四鈣磷酸鹽與二水合磷酸氫鈣等比率合成的磷酸鈣骨水泥 ,稱之為nd-CPC ;第二種是兩倍的二水合磷酸氫鈣與四鈣磷酸鹽合成之磷酸鈣骨水泥,稱之為DCP-rich CPC;市售磷酸鈣的組成是60% 的羥基磷灰石及40%的β-磷酸三鈣。實驗以大鼠脊椎後外側融合來進行,三種磷酸鈣被放置在腰椎第四、第五節橫突間。要觀察的重點在於被植入的磷酸鈣形成新生骨的程度。評估方式是利用X光、電腦斷層、徒手觸摸測試、三點力學測試、組織切片方式來進行。
結果顯示在徒手觸摸測試上,多數脊椎檢體都顯示出如預期般的穩定結構;X光結果顯示在DCP-rich CPC 這組有較好的骨整合 ,同樣的結果在電腦斷層也看得出來,DCP-rich CPC這組其新生骨體積大於其它兩組。在三點力學測試結果則是三組一樣,並無統計學差異。組織切片可以觀察到DCP-rich CPC這組有最佳的骨整合。綜合上述,DCP-rich CPC 是最適合手術醫師進行脊椎融合手術時,為了促進骨生長而植入之磷酸鈣骨水泥。
英文摘要 Calcium phosphate cement (CPC) is one of the calcium phosphate (CaP) ceramics, which are widely used in dental and orthopedic applications. CPC is prepared as a paste which allows for the perfect filling of a bone defect or for injection into a bone defect using a minimally invasive approach. For most applications, however, CPC requires washout resistance; that is, the ability to set in a liquid without disintegration. This issue can be overcome by forming nanocrystals on the surfaces of the reactants of a CPC, which could significantly increases particle interlocking of the reactants and thus imparts washout resistance to the CPC. This novel CPC is called “non-dispersive CPC”.
This study evaluated the effectiveness of two kinds of non-dispersive CPCs with different chemical compositions and one commercial calcium phosphate on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/ dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion.
論文目次 Abstract I
中文摘要 III
Contents IV
List of Tables VII
List of Figures VIII
Chapter1. The Characteristics of Calcium Phosphate Cements 1
1.1 Introduction 1
1.2 Biology of Spine Motion Segment 1
1.3 Aging of Spine 3
1.4 Surgical Intervention of Aging Spine 4
1.4.1 Surgical Decompression 5
1.4.2 Spinal Fusion Surgery 6
1.5 Bone Graft Substitutes in Biological Availability 8
1.6 Bone Graft Substitutes for Spine Fusion 8
1.6.1 Autologous/ Allograft 9
1.6.2 Ceramics 10
1.7 Characteristics of Calcium Phosphate Cements (CPCs) 11
1.7.1 Calcium Phosphate Cements On Hardening Mechanism 14
1.8 Statement of Problems and Rationales of Calcium Phosphate Cements 15
1.9 Calcium Phosphate Cements as a Therapeutic Target in Spinal Diseases 16
Chapter 2. Use of DCP-rich Calcium Phosphate Cement for Controlling Osseointegration in A Rat Spinal Fusion Model 19
2.1 Introduction 19
2.2 Materials and Methods 21
2.2.1 Preparation of nd-CPC and DCP-rich CPC 21
2.2.2 Surgical Procedure of the L4–L5 Posterolateral Fusion Model of Lumbar Vertebrae 22
2.2.3 Experimental Study Groups 24
2.2.4 Radiographic Analysis 25
2.2.5 Manual Palpation 26
2.2.6 Biomechanical Testing 26
2.2.7 Microcomputed Tomography 27
2.2.8 X-Ray Diffraction 28
2.2.9 Histological Analysis 28
2.2.10 Statistical Analysis 28
2.3 Results 29
2.3.1 Manual Palpation 29
2.3.2 Radiographic Evaluation 29
2.3.3 Mechanical Testing 31
2.3.4 Micro-CT and Bone Volume Ratio Evaluation 42
2.3.5 Phase Identification 45
2.3.6 Histological Examination 46
2.4 Discussion 53
2.5 Conclusion 56
Chapter 3. Incorporation of Collagen in Calcium Phosphate Cements for Controlling Osseointegration 57
3.1 Introduction 57
3.2 Materials and Methods 58
3.2.1 Preparation of DCP-rich CPC 58
3.2.2 Solubilized Type I Collagen 58
3.2.3 Collagen-Containing DCP-Rich CPC 58
3.2.4 In Vitro Study 59
3.2.5 Morphology of Cell Attachment 60
3.2.6 In Vivo study 60
3.3 Results 62
3.3.1 Cell Viability after Varying Culture Durations 62
3.3.2 In Vitro Study 63
3.3.3 In Vivo Study 66
3.4 Discussion 78
References 81
參考文獻 1. Hu MH, Lee PY, Chen WC, Hu JJ. Incorporation of Collagen in Calcium Phosphate Cements for Controlling Osseointegration. Materials. 2017;10(8).
2. Axelsson P, Johnsson R, Stromqvist B, Arvidsson M, Herrlin K. Posterolateral lumbar fusion. Outcome of 71 consecutive operations after 4 (2-7) years. Acta orthopaedica Scandinavica. 1994;65(3): 309-314.
3. LeGeros RZ. Calcium phosphate materials in restorative dentistry: a review. Advances in dental research. 1988;2(1): 164-180.
4. Rajaee SS, Bae HW, Kanim LE, Delamarter RB. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine. 2012;37(1): 67-76.
5. Yavin D, Casha S, Wiebe S, et al. Lumbar Fusion for Degenerative Disease: A Systematic Review and Meta-Analysis. Neurosurgery. 2017;80(5): 701-715.
6. Barralet JE, Gaunt T, Wright AJ, Gibson IR, Knowles JC. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. Journal of biomedical materials research. 2002;63(1): 1-9.
7. Hu MH, Lee PY, Chen WC, Hu JJ. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model. Materials science & engineering C, Materials for biological applications. 2014;45: 82-88.
8. Almirall A, Larrecq G, Delgado JA, Martinez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Biomaterials. 2004;25(17): 3671-3680.
9. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36 Suppl 3: S20-27.
10. Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine. 2002;27(16 Suppl 1): S26-31.
11. Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. Journal of orthopaedic trauma. 2010;24 Suppl 1: S36-40.
12. Brown MD, Malinin TI, Davis PB. A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical spine fusions. Clinical orthopaedics and related research. 1976(119): 231-236.
13. Stevenson S, Horowitz M. The response to bone allografts. The Journal of bone and joint surgery American volume. 1992;74(6): 939-950.
14. Wu J, Xu S, Qiu Z, et al. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation. Journal of biomaterials applications. 2016;30(6): 722-731.
15. Berven S, Tay BK, Kleinstueck FS, Bradford DS. Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2001;10 Suppl 2: S169-177.
16. Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin Iii SF. Bone graft substitutes for spine fusion: A brief review. World journal of orthopedics. 2015;6(6): 449-456.
17. Muschler GF, Negami S, Hyodo A, Gaisser D, Easley K, Kambic H. Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clinical orthopaedics and related research. 1996(328): 250-260.
18. Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of materials science Materials in medicine. 2014;25(10): 2445-2461.
19. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. The Orthopedic clinics of North America. 1987;18(2): 323-334.
20. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31 Suppl 4: 37-47.
21. McAndrew MP, Gorman PW, Lange TA. Tricalcium phosphate as a bone graft substitute in trauma: preliminary report. Journal of orthopaedic trauma. 1988;2(4): 333-339.
22. Fleming JE, Jr., Cornell CN, Muschler GF. Bone cells and matrices in orthopedic tissue engineering. The Orthopedic clinics of North America. 2000;31(3): 357-374.
23. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics. 2002;25(5 Suppl): s571-578.
24. Constantz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267(5205): 1796-1799.
25. Costantino PD, Friedman CD, Jones K, Chow LC, Sisson GA. Experimental hydroxyapatite cement cranioplasty. Plastic and reconstructive surgery. 1992;90(2): 174-185; discussion 186-191.
26. Kurashina K, Kurita H, Kotani A, Kobayashi S, Kyoshima K, Hirano M. Experimental cranioplasty and skeletal augmentation using an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement: a preliminary short-term experiment in rabbits. Biomaterials. 1998;19(7-9): 701-706.
27. Costantino PD, Friedman CD, Lane A. Synthetic biomaterials in facial plastic and reconstructive surgery. Facial plastic surgery : FPS. 1993;9(1): 1-15.
28. Fukase Y, Wada S, Uehara H, Terakado M, Sato H, Nishiyama M. Basic studies on hydroxy apatite cement: I. Setting reaction. Journal of oral science. 1998;40(2): 71-76.
29. Hong YC, Wang JT, Hong CY, Brown WE, Chow LC. The periapical tissue reactions to a calcium phosphate cement in the teeth of monkeys. Journal of biomedical materials research. 1991;25(4): 485-498.
30. Heini PF, Berlemann U. Bone substitutes in vertebroplasty. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2001;10 Suppl 2: S205-213.
31. Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. Journal of biomedical materials research. 1998;43(4): 428-432.
32. Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ, Sisson GA, Sr. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Archives of otolaryngology--head & neck surgery. 1991;117(4): 385-389.
33. Shindo ML, Costantino PD, Friedman CD, Chow LC. Facial skeletal augmentation using hydroxyapatite cement. Archives of otolaryngology--head & neck surgery. 1993;119(2): 185-190.
34. Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials. 1998;19(17): 1593-1599.
35. Bermudez O, Boltong MG, Driessens FC, Ginebra MP, Fernandez E, Planell JA. Chloride- and alkali-containing calcium phosphates as basic materials to prepare calcium phosphate cements. Biomaterials. 1994;15(12): 1019-1023.
36. Fukase Y, Eanes ED, Takagi S, Chow LC, Brown WE. Setting reactions and compressive strengths of calcium phosphate cements. Journal of dental research. 1990;69(12): 1852-1856.
37. Ko CL, Chen JC, Tien YC, Hung CC, Wang JC, Chen WC. Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement. Journal of biomedical materials research Part A. 2015;103(1): 203-210.
38. Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ, Sisson GA, Sr. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Archives of otolaryngology--head & neck surgery. 1991;117(4): 385-389.
39. Takagi S, Chow LC, Ishikawa K. Biomaterials. 1998;19(17): 1593-1599.
40. S.D. Boden, J.H. Schimandle, W.C. Hutton, Spine 20 (1995) 412–420.
41. H.N. Herkowitz, L.T. Kurz, J. Bone Joint Surg. Am. 73A (1991) 802–808.
42. T.A. Zdeblick, Spine 18 (1993) 983–991.
43. K. Vaz, K. Verma, T. Protopsaltis, F. Schwab, B. Lonner, T. Errico, SAS J. 4 (2010) 75–86.
44. E. Truumees, H.N. Herkowitz, Univ. Pa. Orthop. J. 12 (1999) 77–88.
45. L.C. Chow, Dent. Mater. J. 28 (2009) 1–10.
46. M. Bohner, Injury 31 (2000) S37–S47.
47. M.H. Alkhraisat, J. Cabrejos-Azama, C.R. Rodriguez, L.B. Jerez, E.L. Cabarcos, Mater. Sci. Eng. C 33 (2013) 475–481.
48. Wang, J.C.; Ko, C.L.; Hung, C.C.; Tyan, Y.C.; Lai, C.H.; Chen, W.C.; Wang, C.K. Deriving fast setting properties of tetracalcium phosphate/dicalcium phosphate anhydrous bone cement with nanocrystallites on the reactant surfaces. J. Dent. 2010, 38, 158–165.
49. S.V. Dorozhkin, Materials 2 (2009) 221–291.
50. H.H.K. Xu, L.A. Zhao, M.S. Detamore, S. Takagi, L.C. Chow, Tissue Eng. A 16 (2010) 2743–2753.
51. C.-L. Ko, J.-C. Chen, C.-C. Hung, J.-C. Wang, Y.-C. Tien, W.-C. Chen, Mater. Sci. Eng. C39 (2014) 40–46.
52. W.C. Chen, C.P. Ju, J.H.C. Lin, J. Oral Rehabil. 34 (2007) 541–551.
53. 55. C.L. Ko, W.C. Chen, J.C. Chen, Y.H. Wang, C.J. Shih, Y.C. Tyan, C.C. Hung, J.C. Wang, Mater. Sci. Eng. C 33 (2013) 3537–3544.
54. W.E. Brown, E.F. Epstein, J. Res. Natl. Bur. Stand. A 69 (1965) 547–551.
55. J.-H. Chern Lin, C.-P. Ju, W.-C. Chen, C.-P. Ju, K.-L. Lin, I.-C. Wang, US Patent No: 7,169,373, 2007.
56. W.-C. Chen, C.-C. Hung, K. Chia-Ling, US Patent Application No: 2010/0313,791,2009.
57. B. Peterson, R. Iglesias, J. Zhang, J.C.Wang, J.R. Lieberman, Spine 30 (2005) 283–289.
58. Walsh, W.R.; Vizesi, F.; Cornwall, G.B.; Bell, D.; Oliver, R.; Yu, Y. Posterolateral spinal fusion in a rabbit model using a collagen-mineral composite bone graft substitute. Eur. Spine J. 2009, 18, 1610–1620.
59. T. Namikawa, H. Terai, M. Hoshino, M. Kato, H. Toyoda, K. Yano, H. Nakamura, K. Takaoka, Spine 32 (2007) 2294–2299.
60. S. Okamoto, T. Ikeda, K. Sawamura, M. Nagae, H. Hase, Y. Mikami, Y. Tabata, K. Matsuda, M. Kawata, T. Kubo, Tissue Eng. A 18 (2012) 157–166.
61. Ko, C.L.; Chen, J.C.; Tien, Y.C.; Hung, C.C.; Wang, J.C.; Chen, W.C. Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement. J. Biomed. Mater. Res. A. 2015, 103, 203–210.
62. J.N. Grauer, D.A. Bomback, R. Lugo, N.W. Troiano, T.C. Patel, G.E. Friedlaender, Spine J.4 (2004) 281–286.
63. D.A. Shin, B.M. Yang, G. Tae, Y.H. Kim, H.S. Kim, H.I. Kim, Spine J. 14 (2014) 408–415.
64. A.J. Ambard, L. Mueninghoff, J. Prosthodont. 15 (2006) 321–328.
65. W.C. Chen, J.H. Lin, C.P. Ju, J. Biomed. Mater. Res. A 64 (2003) 664–671.
66. S. Bose, S. Tarafder, S.S. Banerjee, N.M. Davies, A. Bandyopadhyay, Bone 48 (2011) 1282–1290.
67. S. Hirayama, S. Takagi, M. Markovic, L.C. Chow, J. Res. Natl. Inst. Stand. Technol. 113(2008) 311–320.
68. K. Mao, F. Cui, J. Li, L. Hao, P. Tang, Z. Wang, N. Wen, M. Liang, J. Wang, Y. Wang, J.Biomater. Appl. 27 (2012) 37–45.
69. M.P. Ginebra, T. Traykova, J.A. Planell, J. Control. Release 113 (2006) 102–110.
70. D.J. Lin, C.P. Ju, S.H. Huang, Y.C. Tien, H.S. Yin, W.C. Chen, J.H. Chern Lin, J. Mech. Behav. Biomed. Mater. 4 (2011) 1186–1195.
71. J.C. Chen, C.L. Ko, C.J. Shih, Y.C. Tien, W.C. Chen, J. Dent. 40 (2012) 114–122.
72. S.D. Boden, T.A. Zdeblick, H.S. Sandhu, S.E. Heim, Spine 25 (2000) 376–381.
73. K. Majid, M.D. Tseng, K.C. Baker, A. Reyes-Trocchia, H.N. Herkowitz, Spine J. 11(2011) 560–567.
74. J.R. Lieberman, S.C. Ghivizzani, C.H. Evans, Mol. Ther. 6 (2002) 141–147.
75. Laurencin, C.; Khan, Y.; El-Amin, S.F. Bone graft substitutes. Expert Rev. Med. Devices 2006, 3, 49–57.
76. Chen, J.C.; Ko, C.L.; Shih, C.J.; Tien, Y.C.; Chen, W.C. Calcium phosphate bone cement with 10 wt. % platelet-rich plasma in vitro and in vivo. J. Dent. 2012, 40, 114–122.
77. Sun, L.; Xu, H.H.; Takagi, S.; Chow, L.C. Fast setting calcium phosphate cement-chitosan composite: Mechanical properties and dissolution rates. J. Biomater. Appl. 2007, 21, 299–315.
78. Perez, R.A.; Altankov, G.; Jorge-Herrero, E.; Ginebra,M.P.Micro- and nanostructured hydroxyapatite-collagen microcarriers for bone tissue-engineering applications. J. Tissue Eng. Regen. Med. 2013, 7, 353–361.
79. Perez, R.A.; Ginebra, M.P. Injectable collagen/alpha-tricalcium phosphate cement: Collagen-mineral phase interactions and cell response. J. Mater. Sci. Mater. Med. 2013, 24, 381–393.
80. Mattila, P.K.; Lappalainen, P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell. Biol. 2008, 9, 446–454.
81. Chen, W.; Zhou, H.; Weir, M.D.; Tang, M.; Bao, C.; Xu, H.H. Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-rgd scaffold for bone repair. Tissue Eng. Part. A 2013, 19, 915–927.
82. Pieske, O.; Wittmann, A.; Zaspel, J.; Loffler, T.; Rubenbauer, B.; Trentzsch, H.; Piltz, S. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones. J. Trauma. Manag. Outcomes 2009, 3, 11.
83. De Long,W.G., Jr.; Einhorn, T.A.; Koval, K.; McKee, M.; Smith,W.; Sanders, R.;Watson, T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J. Bone Jt. Surg. Am. 2007, 89, 649–658.
84. Hsiong, S.X.; Boontheekul, T.; Huebsch, N.; Mooney, D.J. Cyclic arginine-glycine-aspartate peptides enhance three-dimensional stem cell osteogenic differentiation. Tissue Eng. Part. A 2009, 15, 263–272.
85. Kim, H.K.; Kim, J.H.; Abbas, A.A.; Kim, D.O.; Park, S.J.; Chung, J.Y.; Song, E.K.; Yoon, T.R. Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med. Sci. 2009, 24, 214–222.
86. Mussano, F.; Lee, K.J.; Zuk, P.; Tran, L.; Cacalano, N.A.; Jewett, A.; Carossa, S.; Nishimura, I. Differential effect of ionizing radiation exposure on multipotent and differentiation-restricted bone marrow mesenchymal stem cells. J. Cell. Biochem. 2010, 111, 322–332.
87. Birmingham, E.; Niebur, G.L.; McHugh, P.E.; Shaw, G.; Barry, F.P.; McNamara, L.M. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell. Mater. 2012, 23, 13–27.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw