進階搜尋


 
系統識別號 U0026-2108201716384400
論文名稱(中文) 鎂合金降解評估-模擬與實驗
論文名稱(英文) Degradation behaviour of magnesium alloy - Simulation and experiment approach
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 張嘉容
研究生(英文) Chia-Jung Chang
電子信箱 q2330416@gmail.com
學號 P86024019
學位類別 碩士
語文別 英文
論文頁數 60頁
口試委員 指導教授-張志涵
口試委員-洪鼎侃
口試委員-葉明龍
口試委員-葉純妤
口試委員-張家豪
中文關鍵字 孔隙腐蝕模擬  鎂合金  可降解醫材  微計算機斷層掃描 
英文關鍵字 Pitting corrosion simulation  Magnesium alloy  Biodegradable materials  Micro-CT 
學科別分類
中文摘要 鎂合金在近年在作為可降解醫材的開發上備受矚目,鎂具有無毒性、生物相容性和可降解等優點,可以改善多種醫材的性能和限制,然而鎂合金有降解過快造成組織痊癒前無法維持植入物的功能等問題,因此有許多關於鎂合金的研究是著重在控制腐蝕速率。
在過去很多研究把重點放在鎂合金腐蝕的整體變化來進行定量分析,然而只考慮總體腐蝕的變化並不足以確定植入物的機械性能。因此本研究使用微計算機斷層掃描來研究鎂合金局部和內部的腐蝕行為。μCT提供了實用的方法來研究腐蝕行為的細節,但其在可降解生物材料中的應用仍需要進一步去評估,因此本研究的目的是確認使用μCT進行腐蝕坑行為進行定性和定量分析的可行性,而結果顯示使用μCT分析腐蝕坑是可行且有用的方法。特別是在三維影像、腐蝕坑深度和表面積的探討,μCT比其他許多研究腐蝕行為之方法是更直觀且更具優勢的。
此外在本研究中也利用μCT得到的腐蝕實驗數據,開發了分析鎂合金孔隙腐蝕行為的模擬模型,而模擬中的腐蝕坑行為和趨勢與實驗結果是一致的。以此模擬模型對表面積變化作更進一步的討論,藉由模擬長時間腐蝕的結果可以看出表面積變化對質量損失速率的影響在後期是不能忽視。另外此模擬腐蝕模型還具有潛力去結合有限元素法,來探索機械性質與腐蝕之間的相互影響,以實現可降解醫材和植入物的開發。
英文摘要 Magnesium alloys have recently been attracting attention as a degradable biomaterial. They have advantages including non-toxicity, biocompatibility, and biodegradability. To develop magnesium alloys into biodegradable medical materials, previous research has quantitatively analyzed magnesium alloy corrosion by focusing on the overall changes in the alloy.
However, considering only the changes in overall corrosion behavior is not sufficient to determine the mechanical properties related to biomedical implants. Therefore, this study investigated local and internal corrosion patterns using micro-computed tomography. The introduction of μCT (X-ray micro-computed tomography) provides a practical approach by which to study corrosion behavior in detail, but its use in the degradable biomaterials requires further assessment. The objective for this study is to examine the feasibility of using μCT for the qualitative and quantitative analysis of corrosion pits behavior. The results showed that μCT is a feasible and helpful method for analyzing corrosion pits. Especially in the three-dimensional image, the depth of the corrosion pits and the surface area, relative to many other methods of studying corrosion behavior, μCT is more intuitive and more advantageous.
Furthermore, in this study, the simulation models used to analyze the pitting corrosion behavior of magnesium alloys were developed by using the corrosion experimental data from μCT. The trend of the pit behavior and corrosion patterns in the simulation were consistent with the experimental results. Using this simulation model to further discuss the surface area changes, and based on these validated models considering long-term applications, it was shown that the effect of changes on the surface area on mass loss rate cannot be ignored. Furthermore, there is further potential to combine this method with the FE method to explore the interaction between mechanical factors and corrosion in order to develop degradable materials and biomedical implants.
論文目次 中文摘要 I
ABSTRACT II
誌謝 III
CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES IX
CHAPTER 1. INTRODUCTION 1
1.1 Research background 1
1.1.1 Advantage of magnesium alloy as medical material 1
1.1.2 Limitations of Mg alloy as a medical material 1
1.1.3 Development and improvement of Mg alloy as a medical material 1
1.2 Motivation and purposes 2
1.3 Introduction to magnesium 3
1.3.1 Physical properties of magnesium 3
1.3.2 Chemical properties of magnesium 4
a. Hydrogen Evolution Measurement 4
b. Thermodynamic tendency 4
c. Surface film 4
1.3.3 Magnesium alloys 5
1.4 Corrosion of Magnesium and Magnesium Alloys 7
1.4.1 Localized corrosion of passive films 7
1.4.2 Localized corrosion of coated Mg alloys 8
1.4.3 Factors that affect corrosion 9
1.4.4 Evaluation of corrosion 9
a. Mass loss measurements 9
b. Electrochemical measurements 11
c. The issue of changes in surface area 13
1.5 Evaluation of magnesium alloy corrosion pits using μCT 14
CHAPTER 2. MATERIALS AND METHODS 16
2.1 Experimental Procedure 16
2.1.1 Sample preparation 17
2.1.2 Microstructural characterization 17
2.1.3 Immersion Tests 17
2.1.4 Micro-computed tomography 17
2.1.5 Image and data processing 18
2.1.6 Overall corrosion rate of specimens 21
2.2 Algorithm for simulated corrosion 22
CHAPTER 3. RESULTS 26
3.1 Experimental Procedure 26
3.1.1 Feasibility of using μCT to study corrosion behavior 26
a. Comparison of μCT and SEM images 26
b. Comparison of ML with previously reported results 28
3.1.2 Using μCT to analyze corrosion pits 29
a. The issue of surface area 30
b. Mass loss per unit area 31
c. Number of pits 32
d. Maximum depths of corrosion pits 34
e. Ratio of corrosion area on the surface 35
f. Eccentricity and pit sizes 36
3.2 Simulation 38
3.2.1 Convergence and Stability Analysis of ML 40
a. Convergence analysis by different grid sizes 40
b. Stable analysis by the same grid size 41
3.2.2 ML comparison in simulation and experiment 43
3.2.3 Comparison of corrosion patterns in the simulation and experiment is sections at different depths 44
CHAPTER 4. DISCUSSION 48
4.1 EXPERIMENTAL PROCEDURE 48
4.2 SIMULATION 50
CHAPTER 5. CONCLUSION 52
APPENDIX: THE EFFECT OF SURFACE AREA INCREASE AND REMOVAL OF THE SUSPENSION ELEMENTS FOR A LONG-TERM CORROSION SIMULATION 54
REFERENCES 57
參考文獻 1. Soya, Y., et al. Corrosion Behavior of Engineering Materials in Flow Field. in Advanced Materials Research. 2014. Trans Tech Publ.
2. Živić, F., et al., The Potential of Magnesium Alloys as Bioabsorbable/Biodegradable Implants for Biomedical Applications. Tribology in Industry, 2014. 36(1).
3. Kirkland, N.T. and N. Birbilis, Magnesium Biomaterials: Design, Testing, and Best Practice. 2014: Springer.
4. Song, G. and S. Song, A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007. 9(4): p. 298-302.
5. Song, G., Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007. 49(4): p. 1696-1701.
6. Jin, W., et al., Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corrosion Science, 2015. 94: p. 142-155.
7. Zander, D. and N.A. Zumdick, Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys. Corrosion Science, 2015. 93: p. 222-233.
8. Liu, M. and G.-L. Song, Impurity control and corrosion resistance of magnesium–aluminum alloy. Corrosion Science, 2013. 77: p. 143-150.
9. Córdoba, L., M. Montemor, and T. Coradin, Silane/TiO 2 coating to control the corrosion rate of magnesium alloys in simulated body fluid. Corrosion Science, 2016. 104: p. 152-161.
10. Lei, T., et al., Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process. Corrosion science, 2010. 52(10): p. 3504-3508.
11. Hiromoto, S., Self-healing property of hydroxyapatite and octacalcium phosphate coatings on pure magnesium and magnesium alloy. Corrosion Science, 2015. 100: p. 284-294.
12. BIAN, L.W.X.Z., Magnesium and magnesium alloy. 2005: Central South University Press.
13. Hofstetter, J., et al., Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo. Corrosion Science, 2015. 91: p. 29-36.
14. Kraus, T., et al., Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta biomaterialia, 2012. 8(3): p. 1230-1238.
15. Ročňáková, I., et al., Assessment of localized corrosion under simulated physiological conditions of magnesium samples with heterogeneous microstructure: Value of X-ray computed micro-tomography platform. Corrosion Science, 2016. 104: p. 187-196.
16. Singh, I., M. Singh, and S. Das, A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. Journal of Magnesium and Alloys, 2015. 3(2): p. 142-148.
17. Song, G.-L., Corrosion of magnesium alloys. 2011: Elsevier.
18. Sun, B., P. Song, and X. Du, A study on solution and phase transformation of some magnesium borates. J. Salt Lake Res, 1994. 2(4): p. 26-30.
19. Nazarov, A. and Y. Mikhailovskii, Effect of complex formation on self-dissolution of a magnesium anode. Protection of Metals(Russia)(USA), 1990. 26(1): p. 9-15.
20. Rösler, J., H. Harders, and M. Baeker, Mechanical behaviour of engineering materials: metals, ceramics, polymers, and composites. 2007: Springer Science & Business Media.
21. Black, J.T. and R.A. Kohser, DeGarmo's materials and processes in manufacturing. 2011: John Wiley & Sons.
22. ASTM, B., 275-05: Standard practice for codification of certain nonferrous metals and alloys, cast and wrought1. Annual Book of ASTM Standards. Philadelphia, Pennsylvania, USA: American Society for Testing and Materials, 2005.
23. Ghali, E., Corrosion resistance of aluminum and magnesium alloys: understanding, performance, and testing. Vol. 12. 2010: John Wiley & Sons.
24. Nisancioglu, K., O. Lunder, and T. Aune. Corrosion mechanism of AZ 91 magnesium alloy. in Past to Future: 47 th Annual World Magnesium Conference. 1990.
25. Ghali, E., W. Dietzel, and K.-U. Kainer, General and localized corrosion of magnesium alloys: a critical review. Journal of Materials Engineering and Performance, 2004. 13(1): p. 7-23.
26. Li, J., et al., In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. Journal of Materials Science, 2010. 45(22): p. 6038-6045.
27. Cheng, Y.-l., et al., Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2009. 19(3): p. 517-524.
28. Ng, W., K. Chiu, and F. Cheng, Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Materials Science and Engineering: C, 2010. 30(6): p. 898-903.
29. Testing, A.S.f. and Materials. ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. 2004. ASTM.
30. Standard, A., G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2006. 3.
31. Vauleugenhaghe, C., et al., Atlas of Electrochemical Equilibrium in Aqueous Solutions. Atlas of Electrochemical Equilibrium in Aqueous Solutions, 1974.
32. Rad, L.B., et al. Computational scanning electron microscopy. in CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2007 International Conference on Frontiers of Characterization and Metrology. 2007. AIP Publishing.
33. Rad, L.B., et al., Economic approximate models for backscattered electrons. Journal of Vacuum Science & Technology B, 2007. 25(6): p. 2425-2429.
34. Tafti, A.P., et al., Recent advances in 3D SEM surface reconstruction. Micron, 2015. 78: p. 54-66.
35. NACE, A., ASTMG31–12a Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM International, West Conshohocken, PA, 2012.
36. Lee, K.H. and H. Woo, Direct integration of reverse engineering and rapid prototyping. Computers & Industrial Engineering, 2000. 38(1): p. 21-38.
37. Canny, J., A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 1986(6): p. 679-698.
38. Robert, C.P., Monte carlo methods. 2004: Wiley Online Library.
39. Song, G.L. and A. Atrens, Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1999. 1(1): p. 11-33.
40. Wen, Z., et al., Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. Journal of Alloys and Compounds, 2009. 488(1): p. 392-399.
41. Plake, B.S., K. Huff, and R. Reshetar, National Council on Measurement in Education.
42. Altun, H. and S. Sen, Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Materials & design, 2004. 25(7): p. 637-643.
43. Arlinghaus, S., Practical handbook of curve fitting. 1994: CRC press.
44. Anslyn, E.V. and D.A. Dougherty, Modern physical organic chemistry. 2006: University Science Books.
45. Pardo, A., et al., Electrochemical estimation of the corrosion rate of magnesium/aluminium alloys. International Journal of Corrosion, 2009. 2010.
46. .
47. Kelly, R.G., et al., Electrochemical techniques in corrosion science and engineering. 2002: CRC Press.
48. Wang, H., Z. Hao, and S. Wen, Do biodegradable magnesium alloy intramedullary interlocking nails prematurely lose fixation stability in the treatment of tibial fracture? A numerical simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2017. 65: p. 117-126.
49. Xiong, L., et al., Modeling and simulation of material degradation in biodegradable wound closure devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2014. 102(6): p. 1181-1189.
50. Vijayaraghavan, V., et al., Finite Element Based Physical Chemical Modeling of Corrosion in Magnesium Alloys. Metals, 2017. 7(3): p. 83.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw