系統識別號 U0026-2108201716265100
論文名稱(中文) 結合軟體定義無線電與展頻技術進行時鐘誤差之估測
論文名稱(英文) Estimation of Clock Error based on Technique of Spread Spectrum and Software Defined Radio
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 陳昌政
研究生(英文) Chang-Cheng Chen
學號 N26041165
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-莊智清
中文關鍵字 時鐘同步  精密時間協定  時鐘誤差估測  軟體定義無線電 
英文關鍵字 GPS  Precision Time Protocol  clock error estimation  software-defined radio 
中文摘要 隨著全球定位系統的迅速發展與普及,無線定位成為了一個重要的議題,無線定位的可以應用在不同的情境,舉凡緊急救援和智慧運輸系統等皆需可靠的定位系統,然而在定位系統中有一個重要的影響因素,時間同步。時間同步會影響整體定位品質,因此在整體系統當中必須對於時鐘誤差進行監控並給予補償,例如全球定位系統中,存在數個監控站以及主控台,對於衛星的品質進行監控,以確保整體定位之精準度。另外,時鐘同步在自動化工業中同樣扮演重要的角色,自動化工業對於低成本與高效率的需求日益攀升,因此對於時間同步之精度也隨之上升,在自動化工業當中時間同步技術與定位系統不同,使用網路時間協定與精密時間協定等網絡分布式應用。本論文將透過精密時間協定,同步多個時鐘並驗證其效果,並在軟體定義無線電的平台上開發展頻技術,對於時間同步進行驗證。
英文摘要 With the rapid development and popularization of global positioning system, positioning has become an important issue. Positioning system can be applied in different situations, such as rescue and military. In the positioning system, there is an important influencing factor - time synchronization. Time synchronization would affect the positioning quality, so it is necessary to monitor and compensate the clock error by algorithm in a navigation system. Such as the global positioning system, there are a number of monitoring stations monitoring the quality of the satellite and its health to ensure that the accuracy positioning. In addition, clock synchronization also plays an important role in the automation industry. The increasing demand for low-cost and high-efficiency industries is also increasing for the accuracy of time synchronization. In the automation industry, time synchronization technology is different from positioning system. For example, Network time protocol and precision time protocol, mainly for the network distributed application.
This thesis mainly uses the precision time protocol to synchronize several clocks, and applies the spread spectrum technology in software defined radio to verify the precision time protocol.
論文目次 摘要 I
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言與動機 1
1.2 文獻回顧 1
1.3 論文貢獻 2
1.4 論文架構 3
第二章 時鐘誤差分析與估測模型 4
2.1 雜訊模型 4
2.2 艾倫方差 6
2.3 頻率量測系統 8
2.3.1 時間區間計數法(Time Interval Counter Method) 8
2.3.2 外差法 8
2.4 時鐘誤差模型 9
2.5 卡爾曼濾波器 10
2.6 卡爾曼濾波器結合艾倫方差之應用 13
第三章 時間同步技術 15
3.1 原子鐘 15
3.2 全球定位系統 16
3.3 精確時間協定 18
第四章 實驗架構及分析 21
4.1 精密時間同步實驗架構與結果分析 21
4.1.1 結果分析 25
4.2 展頻通訊技術簡介 32
4.2.1 展頻調變介紹 34
4.2.2 解調接收訊號 38 電碼擷取演算法 39 直接搜尋演算法 40 平行頻率搜尋演算法 41 平行電碼搜尋演算法 42 載波與電碼追蹤演算法 43 載波追蹤演算法 44 電碼追蹤演算法 48
4.3 軟體定義無線電結合展頻技術之實驗過程與分析 49
4.3.1 結果分析 53
第五章 結論與未來工作 59
5.1 結論 59
5.2 未來工作 60
參考文獻 61
參考文獻 [1] 莊智清, 衛星導航, 全華圖書, 2012.
[2] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems," IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pp. 1-269, 2008.
[3] W. J. Riley, "Handbook of Frequency Stability Analysis." National Institute of Standards and Technology ,2008
[4] T. Cooklev, J. C. Eidson, and A. Pakdaman, "An Implementation of IEEE 1588 Over IEEE 802.11b for Synchronization of Wireless Local Area Network Nodes," IEEE Transactions on Instrumentation and Measurement, vol. 56, pp. 1632-1639, 2007.
[5] H. Cho, J. Jung, B. Cho, Y. Jin, S. W. Lee and Y. Baek, "Precision Time Synchronization Using IEEE 1588 for Wireless Sensor Networks," International Conference on Computational Science and Engineering, pp. 579-586, 2009.
[6] L. Galleani, L. Sacerdote, P. Tavella, and C. Zucca, "A mathematical model for the atomic clock error," Metrologia, vol. 40, p. S257, 2003.
[7] G. Panfilo and P. Tavella, "Atomic clock prediction based on stochastic differential equations," Metrologia, vol. 45, p. S108, 2008.
[8] C. Zucca and P. Tavella, "The clock model and its relationship with the Allan and related variances," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no.2, pp. 289-296, 2005.
[9] G. Huang and Q. Zhang, "Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors," GPS Solutions, vol. 16, pp. 531-539, 2012.
[10] H. Kim, X. Ma, and B. R. Hamilton, "Tracking Low-Precision Clocks With Time-Varying Drifts Using Kalman Filtering," IEEE/ACM Transactions on Networking, vol. 20, pp. 257-270, 2012.
[11] D. W. Allan, "Statistics of atomic frequency standards," Proceedings of the IEEE, vol. 54, pp. 221-230, 1966.
[12] Allan variance. Available: http://baike.baidu.com/view/10596299.htm
[13] "IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros," IEEE Std 647-1995, pp. 1-88, 1996.
[14] S. T. Hutsell, "Relating the Hadamard variance to MCS Kalman filter clock estimation," DTIC Document, 1995.
[15] R.-W. Lee, "Application of Tire/Road Friction Estimation to Autonomous Emergency Braking System," Master Thesis, Electrical Engineering, National Cheng Kung University, 2015.
[16] S.-M. Tang, "Interacting Multiple Model Positioning Algorithm and its Application in Vehicle Navigation," Master Thesis, Electrical Engineering, National Cheng Kung University, 2012.
[17] L. C. Hun, O. L. Yeng, L. T. Sze, and K. V. Chet, "Kalman Filtering and Its Real‐Time Applications," Real-time Systems, K. Jian, Ed., ed Rijeka: InTech, p. Ch. 06, 2016.
[18] Precision time protocol. Available: http://www.afzhan.com/tech_news/detail/83326.html
[19] Caesium clock. Available: http://blog.xuite.net/lovesharelove/twblog/126542035-%E9%8A%AB%E5%8E%9F%E5%AD%90%E9%90%98
[20] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen, A software-defined GPS and Galileo receiver: a single-frequency approach: Springer Science & Business Media, 2007.
[21] ALAMATH: http://www.alamath.com/alavar/.
[22] J. W. Chaffee, "Relating the Allan Variance to the Diffusion Coefficients of a Linear Stochastic Differential Equation Model for Precision Oscillators," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 34, pp. 655-658, 1987.
[23] S. Bregni, "Clock stability characterization and measurement in telecommunications," IEEE Transactions on Instrumentation and Measurement, vol. 46, pp. 1284-1294, 1997.
[24] S. Bregni, M. Carbonelli, D. D. Seta, D. Perucchini, and G. Zampilloni, "Clock stability measure dependence on time error sampling period," IEEE Global Telecommunications Conference, vol.3, pp. 1451-1455, 1994.
[25] J. Rutman and F. L. Walls, "Characterization of frequency stability in precision frequency sources," Proceedings of the IEEE, vol. 79, pp. 952-960, 1991.
[26] S.-I. Kondo, N. Kubo, and A. Yasuda, "Evaluation of the pseudorange performance by using software GPS receiver," Positioning, vol. 1, p. 0, 2005.
[27] D. Mishra, A. Banik, V. Vats, and T. Ram, "Modeling and Estimation of Stationary and Non-stationary Noises of Rubidium Atomic Clock," Journal of Engineering Research and Applications, vol. 4, pp.44-49, 2014.
[28] B. E. Grantham and M. A. Bailey, "A Least-Squares Normalized Error Regression Algorithm with Application to the Allan Variance Noise Analysis Method," IEEE/ION Position, Location, And Navigation Symposium, pp. 750-756, 2006.
[29] A. Soghoyan, A. Suleiman, and D. Akopian, "A Development and Testing Instrumentation for GPS Software Defined Radio With Fast FPGA Prototyping Support," IEEE Transactions on Instrumentation and Measurement, vol. 63, pp. 2001-2012, 2014.
[30] Z. Xiuqiang, Z. Xiumei, and C. Yan, "Implementation of carrier phase measurements in GPS software receivers," IEEE International Conference on Computational Problem-Solving (ICCP), pp. 338-341, 2013.
[31] Y. C. Wu, Q. Chaudhari, and E. Serpedin, "Clock Synchronization of Wireless Sensor Networks," IEEE Signal Processing Magazine, vol. 28, pp. 124-138, 2011.
[32] Z. Boqun and W. Ning, "The implementation of IEEE 1588 clock synchronization system based on FPGA," IEEE International Conference on Intelligent Control and Information Processing (ICICIP), pp. 216-220, 2014.
[33] D. A. Arpine Soghoyan, "A LabVIEW-Based GPS Receiver Development and Testing Platform with DSP Peripherals: Case study with C6713 DSK," Journal of global positioning systems, vol. 11, 2012.
[34] D. Kim, B. Park, S. Lee, A. Cho, J. Kim, and C. Kee, "Design of efficient navigation message format for UAV pseudolite navigation system," IEEE Transactions on Aerospace and Electronic Systems, vol. 44, pp. 1342-1355, 2008.
  • 同意授權校內瀏覽/列印電子全文服務,於2019-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-12-31起公開。

  • 如您有疑問,請聯絡圖書館