進階搜尋


下載電子全文  
系統識別號 U0026-2108201712162600
論文名稱(中文) 考慮太陽漫射效應於太陽能板之熱傳模擬
論文名稱(英文) Heat Transfer Simulation on a Solar Collector with Beam and Diffuse Solar Irradiance
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 105
學期 2
出版年 106
研究生(中文) 鍾偉權
研究生(英文) Wai-Kwuen Choong
學號 P48991183
學位類別 博士
語文別 英文
論文頁數 91頁
口試委員 召集委員-呂宗行
口試委員-李聰盛
指導教授-張克勤
口試委員-徐子圭
口試委員-溫昌達
口試委員-李約亨
中文關鍵字 太陽熱能  漫射率  輻射熱傳  熱傳模擬 
英文關鍵字 Solar Thermal  Diffuse Fraction  Radiative Heat Transfer  Heat Transfer Simulation 
學科別分類
中文摘要 太陽能應用大部分針對直射量(beam irradiance)作為主要能量來源,很少研究探討漫射效應(diffuse irradiance)更不太會列入實際產品之考量。但由於臺灣氣候變化差異大,即使是在熱帶氣候的南部臺南,年平均之漫射率竟可達0.52,可見對於臺灣之太陽能研究無法逃避漫射率所帶來之影響。雖然漫射效應高之地區不適合發展中高溫太陽能應用,但是基於太陽能是替補夏季電力不足的再生能源,且熱水器等低溫太陽能應用還是可以減少使用化石能源及對環境的傷害。
本研究分爲三個章節,第一部分是利用無工作流體之靜止吸收板吸熱然後分析其熱傳效應,致力於以數值模擬達到實驗所需之測試結果。由於第一章之研究中發現太陽漫射率的影響很大且導致模擬結果失準,第二章主要目標為針對太陽能直射量與漫射量抵達太陽能板之後之能量吸收分佈的預測以便後續分析。此部分為此論文主軸,主要利用蒙地卡羅光路追踪法(Monte-Carlo Ray Tracing Method, MCRT)模擬太陽光進入太陽能板各部件的效應, 並考量玻璃罩之吸收與折射反射等效應。利用直射模型(collimated model)與等向漫射模型(isotropic model)模擬的結果與實驗比對,發現等向漫射的結果之準確性能夠作為後續分析之輸入參考值(input)以減輕計算成本。第三章則利用第二章之結果,對單歧管太陽能熱水器進行實驗與數值模擬,以測試第二章結果之實用性。
研究結果發現,第二章得到之等向性漫射模型之結果能夠作為後續分析所需之輸入參考值,以每分鐘之平均漫射率(diffuse fraction)和太陽入射角度(beam incident angle)就能夠得到實際被吸收之太陽能。此參考值更進一步帶入單歧管熱水器之熱流模擬,結果顯示穩態與暫態之模擬都可利用此輸入參考值得到合理之熱傳量。
英文摘要 Most of solar energy applications aim at beam irradiance as the main energy source, whereas there is a lack of research looking into the effect of the diffuse irradiance. However, the weather of Taiwan is not always clear and sunny, the annual averaged diffuse irradiance in Tainan, the southern part of Taiwan, is up to 52% of the global horizontal irradiance. It is therefore inevitable to study the effect of diffuse irradiance in solar energy applications.
A preliminary numerical study is first conducted. The object is a solar test stand that is operated without the working fluid, and the absorber plate is enveloped by a glass cover. The study attempts to reduce the number of filed test experiments, in which certain requirements on the weather condition have to be satisfied for the experiments to be effective. As a result, the predictions of the numerical model indicate acceptable accuracy only in a clear sunny condition, while bad result is generated on cloudy days due to high diffuse fraction. To solve this issue, the diffuse irradiance is simulated by Monte-Carlo Ray Tracing (MCRT) method by using two diffuse models: collimated and isotropic models. By taking the beam incident angle and the diffuse fraction as its input, the isotropic model can predict the absorption of the solar absorber and the glass cover with acceptable accuracy. The results are then generated to a look-up table that shows the energy absorbed by the absorber and the glass cover. The data provided by the table is further employed in other numerical simulations on a single-tube solar collector. Steady state and transient simulations are subsequently carried out according to the data from the look-up table. The predicted results are in good agreement with the experimental data.
論文目次 摘要 I
ABSTRACT III
第一章 導論 V
第二章 太陽能吸收膜測試平台之熱傳模擬 VI
第三章 太陽日照量模擬 VII
第四章 單歧管太陽能熱水器之熱傳模擬 VIII
第五章 結論 IX
誌謝 X
CONTENTS XI
LIST OF TABLES XIV
LIST OF FIGURES XV
NOMENCLATURE XIX
CHAPTER 1 INTRODUCTION - 1 -
1.1 Motivations and Objectives - 1 -
1.2 Thesis Organization - 3 -
CHAPTER 2 HEAT TRANSFER SIMULATION ON SOLAR TEST STAND - 5 -
2.1 Experiments and Numerical Model Descriptions - 5 -
2.2 Summary - 6 -
CHAPTER 3 SOLAR IRRADIANCE MODELING - 8 -
3.1 Solar Irradiance - 8 -
3.2 Monte-Carlo Ray Tracing Method (MCRT) - 11 -
3.2.1 Radiative Transfer Equation and MCRT - 11 -
3.2.2 Chosen from Probability Distributions - 13 -
3.2.3 Emission and Incidence of Solar Radiation - 14 -
3.2.4 Absorption - 16 -
3.2.4.1 Absorption on a Surface - 16 -
3.2.4.2 Absorption in Participating Medium - 17 -
3.2.5 Reflection and Refraction - 18 -
3.2.6 Intersection Search - 21 -
3.2.7 Pre-processing - 23 -
3.2.8 Flowchart of the MCRT Method - 24 -
3.3 Simulation Results - 26 -
3.3.1 Collimated Irradiance Model - 27 -
3.3.3 Isotropic Irradiance Model - 29 -
3.3.4 Differences Between the Collimated and Isotropic Models - 30 -
3.4 Experiments - 31 -
3.5 Validations - 33 -
3.6 Results and Discussions - 34 -
3.7 Summary - 36 -
CHAPTER 4 CFD SIMULATION OF SINGLE-TUBE FLAT PLATE SOLAR COLLECTOR - 38 -
4.1 Introduction - 38 -
4.2 Experiment Setup - 38 -
4.3 Steady State Simulations - 40 -
4.3.1 Mesh - 40 -
4.3.2 Boundary Conditions - 41 -
4.3.3 Results and Discussions - 44 -
4.4 Transient Simulations - 48 -
4.4.1 Initial Conditions and Boundary Conditions - 48 -
4.4.2 Results and Discussions - 49 -
4.5 Summary - 51 -
CHAPTER 5 CONCLUSIONS - 52 -
REFERENCES - 54 -
TABLES - 57 -
FIGURES - 61 -
參考文獻 Alfaro-Ayala, J.A., Martínez-Rodríguez, G., Picón-Núñez, M., Uribe-Ramírez, A.R., Gallegos-Muñoz, A., “Numerical study of a low temperature water-in-glass evacuated tube solar collector,” Energy Conversion and Management, vol.94, pp. 472–481, 2015.
ANSA/ASHRAE93 Standard, “Methods of testing to determine the thermal performance of solar collectors,” Ashrae, 2003.
Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R., Reinhardt, B., Renné, D., Sengupta, M., Wald, L., Wilbert, S., “Direct normal irradiance related definitions and applications: The circumsolar issue,” Solar Energy, vol.110, pp. 561–577, 2014.
Cadafalch, J., “A detailed numerical model for flat-plate solar thermal devices,” Energy, vol.83, no.6, pp. 2157–2164, 2010.
Central Weather Bureau of Taiwan, Weather Observation Data .
Cheng, Z.D., He, Y.L., Cui, F.Q., Du, B.C., Zheng, Z.J., Xu, Y., “Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model,” Applied Energy, vol.115, pp. 559–572, 2014.
Choong, W.-K., Chang, K.-C., “Heat transfer simulation of a solar test stand,” Applied Thermal Engineering, vol.72, no.1, pp. 143–150, 2014.
Duffie, J.A., Beckman, W.A., Solar Engineering of Thermal Processes. Wiley, 2013.
Eppley, PSP pyranometer .
Farmer, J.T., Howell, J.R., “Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media,” in: James P. Hartnett, T.F.I.Y.I.C., George, A.G. (Eds.), Advances in Heat Transfer. Elsevier, pp.333–429, 1998.
Greve, B.De, “Reflections and Refractions in Ray Tracing,” vol.2, no.5, pp. 6, 2006.
Gueymard, C.A., “Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications,” Solar Energy, vol.83, no.3, pp. 432–444, 2009.
Gueymard, C.A., Myers, D.R., “Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling,” Solar Energy, vol.83, no.2, pp. 171–185, 2009.
Helvaci, H.U., Khan, Z.A., “Mathematical modelling and simulation of multiphase flow in a flat plate solar energy collector,” Energy Conversion and Management, vol.106, pp. 139–150, 2015.
Howell, J.R., Menguc, M.P., Siegel, R., Thermal Radiation Heat Transfer, 5th Edition. CRC Press, 2010.
ISO, “Iso 9806:2013 (e) solar energy - solar thermal collectors - test methods,” ISO 9806:2013, 2013.
Kipp, Z., SMP11 Pyranometer .
Kuo, C.-W., Chang, K.-C., “In-situ measurements of solar diffuse fraction in southern Taiwan,” Journal of the Chinese Institute of Engineers, vol.38, no.6, pp. 723–730, 2015.
Larrouturou, F., Caliot, C., Flamant, G., “Effect of directional dependency of wall reflectivity and incident concentrated solar flux on the efficiency of a cavity solar receiver,” Solar Energy, vol.109, no.1, pp. 153–164, 2014.
Modest, M.F., Radiative Heat Transfer. Elsevier Science, 2013.
Tagliafico, L.A., Scarpa, F., DeRosa, M., “Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors - A review,” Renewable and Sustainable Energy Reviews, vol.30, pp. 526–537, 2014.
Villar, N.M., López, J.M.C., Muñoz, F.D., García, E.R., Andrés, A.C., “Numerical 3-D heat flux simulations on flat plate solar collectors,” Solar Energy, vol.83, no.7, pp. 1086–1092, 2009.
Wilbert, S., “Determination of Circumsolar Radiation and its Effect on Concentrating Solar Power,” Maschinenwesen, vol.Doktor der, pp. 177, 2014.
WMO, “Manual on the Global Observing System,” WMO-No. 544, 2003.
Young Company, Wind Monitor .
Zeeb, C.N., Burns, P.J., “Performance Enhancements of Monte Carlo Particle Tracing Algorithms for Large, Arbitrary Geometries,” ASME National Heat Transfer Conference, Albuquerque, NM, no.1993, pp. 1–10, 1999.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw